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ABSTRACT 
 
This article explores the usage of Google Earth features in developing a hydraulic model. The authors share 
their experience of using Google Earth’s satellite images and Street View images as new remote sensing 
tools to obtain a better understanding of the site through historical images, measure distances, as well as 
estimate river geometry and roughness. The features are found to be useful especially when modeling a river 
remotely when frequent site visits are prohibitive and as a supplement to available data. An example is 
presented where the information obtained from Google Earth is used in HEC-RAS (Hydrologic Engineering 
Center – River Analysis System) to develop a simple before-and-after hydraulic model to illustrate the effects 
of a stormwater tunnel outflow during a flood event on the Kerayong River in Malaysia before and after river 
improvement works has been completed. It is found that Google Earth satellite imagery and Street View 
features are new tools that can be used to aid in estimating channel geometry and roughness, as well as 
channel morphology.  
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1 INTRODUCTION 

Hydraulic modeling of streams and rivers are common yet vital component of most river projects and 
studies. Projects like stormwater management, bridge design, stream rehabilitation, or flood inundation 
mapping require some sort of hydraulic modeling. It is important for a modeler to have an understanding of the 
site for an effective model. Modeling a typical river requires data of sorts such as discharge, river geometry, 
and channel roughness. Traditionally, river geometry data such as reach length, cross-section geometry, 
stream bed/bank material are obtained from in-situ surveys. Field data collection is time consuming and 
costly. Many of these measurements are done frequently and are seen as a “privilege” of the developed world 
as such measurements are less available in developing countries. Challenges of modeling these infrequently 
measured rivers arise in the form of unavailable, outdated information, or inconsistent data records.  

The advent of utilizing geographic information systems (GIS) in hydraulic modeling has brought upon 
improvements in data processing and results. One of the remote sensing advances is the introduction of 
Google Earth, a virtual globe, map, and geographical information program that was used to aid the 
development of the model discussed in this article. Released in 2005, Google Earth displays the 
superimposition of images from satellite imagery, aerial photography, and GIS onto a globe. Rusli et al. (2014) 
suggested that Google Earth’s digital elevation model (DEM) is applicable as a data source in hydrological 
modeling as it is comparable with NASA’s SRTM90 (Shuttle Radar Topography mission), ASTER10, and 
ASTER30 (Advanced Space-borne Thermal Emission and Reflection Radiometer). In 2008, Google 
introduced the Street View feature into the Google Earth program in which 360-degree panoramic street-level 
photos are taken by special equipped Google Street View Camera cars and stitched together, creating a 
seamless first-person virtual world. While most photography is done with a car, other methods like tricycles, 
push carts, and camera-outfitted backpack are used as well. As of February of 2015, Google made Google 
Earth Pro available for free. Google Earth’s features and its zero-dollar price tag make it attractive to be 
utilized in studying a site for hydraulic model development. 

Google Earth’s features were used to develop a model to study the impact of the Stormwater and Road 
Tunnel (SMART) outflow on the hydraulics of its receiving river - the Kerayong River, Malaysia. The study will 
be used as an example throughout this article to illustrate the usage of Google Earth’s features in developing 
the hydraulic model. Located in the Klang Watershed, the SMART Tunnel is a dual-purpose stormwater and 
road tunnel designed to divert stormwater away from the flood prone areas of Kuala Lumpur (Figure 1). During 
prolonged storm events, the tunnel discharges up to 300 m3/s at the outlet through Desa Pond and then into 
the lower reach of the Kerayong River. A one-dimensional steady flow model was performed in HEC-RAS to 
analyze water-surface elevation, velocity, and shear stress from the increased discharge of the SMART 
Tunnel. The Google Earth features that are used to develop the model are historical satellite images, the 
distant measure tools, and Street View. 
 
 

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print) 5035



  
          

  

 

2 DATA 
In this study, the data acquired for the development of the hydraulic model are: (i) Cross section 

geometry of 54 river stations along the Kerayong River (survey year unknown), (ii) Stage and discharge data 
on the Kerayong River from 2008-2009 where the gage station is upstream of the outlet of Desa Pond, (iii) 
Site visit photos, (iv) River geometry measurements at a few locations along the reach. There are still a few 
unknown data that are required for the development of the model such as flood plain measurements, bed and 
bank material, channel roughness, and boundary conditions. As the study is conducted in a different country, 
site visits were cost and time prohibitive. The ease of use of Google Earth allowed for the remote study of the 
site and information about the site was extracted through the features in Google Earth.  
 

 

Figure 1. Components of SMART Tunnel 

3 FEATURES AND METHODS 
 
3.1 Google Satellite Images 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Kerayong River and Watershed 
 

A general understanding of the site was obtained through the use of Google Earth Satellite Images. 
Figure 2 shows the site map generated with ArcMap with the location of the Kerayong River, the Kerayong 
Watershed, and locations of river stations (RS) where cross section geometry data were available. While the 
basemap in Figure 2 was from ESRI World Imagery, it did not provide a high enough resolution for the site to 
allow for a detection of the geometric features of the site (ESRI., 2016). Figure 3 shows the difference in 

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

5036 ©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print)



          
 

 

 

resolution between ESRI’s World Imagery basemap and Google Earth at the site at a 1:5000 scale. While 
ESRI’s World Imagery basemap resolution varies with locations, Google Earth’s imagery ranges around 15m 
to 30m per pixel (Rusli et al., 2014). The images for the site of interest can be saved using the “Save Image” 
function in Google Earth and imported as a shapefile (.shp) or raster (.tiff) into ArcMap or other GIS software. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 3. Comparison of image resolution from Google Earth and ESRI World Imagery Basemap 
 
3.2 Historical Images 

Google Earth’s historical images feature allows for studying of the site through the times. In this example, 
the SMART tunnel was completed in 2007.The changes on the Kerayong River can be observed through 
multiple years since 2001, before the SMART Tunnel until after it was completed. It was observed that 
channel improvement works has been carried out sometime in 2008 and completed by 2010 (Figure 4). The 
“Time Slider” feature in Google Earth allows the model developers to analyze temporal changes of the river. 
This led to the study of the impact of SMART Tunnel outlet on the river before and after channel improvement 
works. The observation of historical images had also prompted a closer look on the available cross-section 
geometric data to determine its validity.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Reach before and after channel improvement works 
 
3.3 Distance Estimation 

Google Earth’s “Ruler” feature allows for distance measurement that allows for the estimation of the 
geometric features of the river such as the length, and width. Figure 5 shows a screenshot of the feature in 
use in Google Earth. While it reports distance down to two decimal places, the varying resolution from 15m to 
30m and different types of map projection used are recognized as sources of measurement errors. In this site, 
through comparisons with available data and measurements, the Google Earth ruler is determined to have an 
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error of +/- 0.1m.  It is suggested that other projects should have a ground level measurement to verify the 
accuracy of Google Earth’s distance measurements.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Utilizing the "Ruler" tool in Google Earth 

 
3.4 Elevation estimation 

Google Earth gives the elevation of a point which is displayed on the bottom corner of the window. It 
examined the suitability of extracting the DEM from Google Earth for watershed delineation and river bed 
elevation. In this case, the elevation indicator in Google Earth shows that the elevation of the river is around 
26m. However, it is not known if the displayed elevation is the ground surface or water surface elevation. 
There are also errors associated with the elevation for channel bed elevation because the resolution in Google 
Earth varies from 15m to 30m grid. The width of the channel in this case does not exceed 30m. As the 
elevation is averaged in a grid, the DEM from Google Earth is deemed unsuitable to represent the channel 
bottom elevation because its resolution is not high enough to capture the bathymetry of small rivers. 

On the other hand, the resolution of the DEM from Google Earth may be useful for the delineation of the 
watershed. While Google does not state if the DEM is a Digital Terrain Model (ground surface) or Digital 
Surface Model (surface of buildings/trees), the delineated watershed from Google Earth’s DEM is comparable 
with the 3 arc-sec DEM from USGS. In this example, some elevation of the river’s floodplain was estimated 
using the Google Earth DEM. 
 
3.5 Utilizing Street View for channel geometry estimation 

One of the newest additions to Google Earth is the Street View feature which aims to have information to 
be more universally accessible and useful (Anguelov et al., 2010). Street View is Google’s feature where 
street-level 360 degree images are captured using vehicles equipped with cameras. While most of the images 
are captured on roads, pedestrian paths and trails are circumnavigated as well with special trikes, push carts, 
and snowmobiles. To develop the hydraulic model, familiarity with the site and the problems can help the 
modeler determine the required level of accuracy in the model. Street View allows a virtual first-person site 
visit that greatly increases the familiarity of the developers with the site.  

One of the challenges encountered in this study is that the date at which the river geometry was 
surveyed was unknown; this gives the possibility that the data provided could be out-of-date. Another 
challenge is that the river geometry data does not include the geometry of the floodplain. For a model that 
would involve a flooding scenario, having the information of the floodplain such as elevation, geometry, and 
roughness would provide a better representation of the hydraulic behavior. In this study, modeling was done 
remotely in the USA whereas the site is in Malaysia; it was cost prohibitive for site visits to obtain field 
measurements. However, the gap could be reasonably filled with information obtained from Street View. 

In the study, street view images were obtained at every vantage point where the river or its floodplain 
was visible. This included streets that are parallel to the river, bridges, and elevated highways (Figure 6). A 
total of 27 street view images were obtained for the Kerayong River. Paired with the locations of the river 
stations plotted on the map in ArcGIS, it is possible to identify the river station through Street View. Although 
exact lengths cannot be measured, by using careful judgement, lengths such as width and depth can be 
estimated and compared with available data. Google Street View images proved to be useful in verifying or 
modifying cross section geometry data. Figure 7 shows the updating of river geometry at a river station that 
includes modifying the channel side slopes and including a floodplain in HEC-RAS.  
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Figure 6. The Yellow Man icon can be dragged to the blue lines where Street View images are available 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. River geometry can be estimated and updated to include floodplain through Street View 

 
3.6 Utilizing Street View to estimate channel roughness 

Conveyance in HEC-RAS is described by Manning’s equation. Bed and bank material as well as 
floodplain vegetation type can be observed in Street View. The corresponding Manning’s n is that obtained 
from the HEC-RAS Reference Manual (USACE, 2010). On main channels Manning’s n ranges from 0.017 for 
float finished concrete to 0.03 for clean, straight, natural channels. On floodplains, Manning’s n ranges from 
0.03 for short grass to 0.05 for scattered brush and heavy weeds. For example, the riprap material and bed 
material at the confluence of the Kerayong and Klang Rivers was estimated using Street View (Figure 8).  
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Figure 8. Street View can be used to identify bed and bank material 

 
4 MODEL DEVELOPMENT & RESULTS 

The information gathered from Google Earth was combined with available data such as discharge, 
channel geometry, and site visit photos to develop the one-dimensional steady state simulation of the river 
under multiple discharges and before and after channel improvement works (Figure 9). It could be observed 
through historical images that a previous “natural” channel was straightened after 2009. This may have been 
warranted by the increased discharge from the SMART Tunnel into the Kerayong River.  

 

 
Figure 9. The same reach was modified to "Pre-2009" and "Engineered" conditions 
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Through flow duration analysis it was determined that the maximum flow that occurred in the Kerayong 
River is 484 m3/s. When modeled with HEC-RAS, it was determined that the Pre-2009 river overtopped and 
caused flooding at 7 of 9 river stations of up to 3 m while the Engineered river only had about 23 cm of 
overtopping of 1 of 9 river stations (Figure 10).  

 

 
Figure 10. The engineered river was able to contain the increased discharge 

 
The model was also used to predict bank stability and if future flooding will occur if discharge is increased 

by 10%. A “Future” flow data was used for the simulation and showed that the 10% increase in flow will cause 
0.71 m of bank overtopping. The suitability of bed and bank material was determined through the estimation of 
particle size with Street View with the velocity and shear stress results from the HEC-RAS model and was 
found to be suitably designed. 

 
4.1 Summary 

A summary table of the suitability for use of each Google Earth feature is presented in Table 1. 
 

Table 1. The suitability of each Google Earth feature 

 
5 CONCLUSIONS 

The utilization of Google Earth features in developing a hydraulic model has revealed some useful new 
features that would be helpful to the modeler. The benefits are that the modeler can obtain information 
remotely with a software that is free of charge. Google satellite images provide a good enough resolution for 
site studies and allows the modeler to familiarize him/herself with the project. Historical images provide 
information on the hydraulic features and behavior in the past. In this case, historical images reveal that 
channel improvement works has been carried out and changed the hydraulics of the river. The distance ruler 
tool in Google Earth can help the modeler measure distances to a certain degree of accuracy that helps with 
developing the model. While the resolution of the DEM of Google Earth is not high enough for delineation of 
the river geometry, it could be used for watershed delineation. Google Street View is perhaps the cherry on 
the cake in this situation where it gives the modeler a virtual, first-person perspective to estimate river 
geometry and bed/bank material. Overall it is recommended that for suitable projects, utilizing Google Earth 
may be beneficial in developing an effective model. 

 

Feature Suitability Comments 
Satellite Images - Remote site study 

- Understanding terrain, land-
use, and geomorphology 

Images vary in resolution 
depending on location. 

Historical Images - Site study through time Time when images are available 
is expected to increase in 
frequency. 

Distance Ruler - Reach length estimation 
- Channel width estimation 

Distance should be validated with 
in-situ known measurements 

DEM - Useful for watershed 
delineation 

- Not suitable for channel depth 
estimation 

DEM resolution seems to be a 
combination of SRTM90 and 
ASTER DEM data. 

Street View - Channel geometry estimation 
- Bed/bank material estimation 

Should be used with careful 
judgement and as supplement to 
available data. 
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ABSTRACT 
 
Smoothed particle hydrodynamics (SPH) is one most noticeable meshfree method and now become very 
popular, and particularly for free surface flows, it is a robust and powerful method for describing deforming 
media (Gomez-Gesteira, et al., 2010). SPH is a very promising method to answer 3D flow modeling in 
meander dynamics. Three basic characteristics of meandering process are flow structure, sediment transport, 
and morpho-dynamic. Helical flow as secondary current in flow structure plays the main role in characterizing 
of meandering dynamics. Meandering geometry is simplified as a curved channel boundary conditions. SPH 
procedures are developed from 3D fluid flow model and collision handling between water particles and a 
curved channel boundary conditions, as meandering geometry simplification. We used simple geometries 
based on Snell’s law to represent basic particle responses to channel walls. We adapted SPH for nearly 
incompressible flow as an incompressible flow in a curved channel that is note bene. Viscosity plays the main 
role in initiating helical flow formation in the channel. Formation of helical flow is generated at downstream 
hemispheres part of the curved channel. This paper presents an application of SPH method to develop helical 
flow as a result of curvature, agreed with Camporeal et al. (2007), and even without sediment transport, 
agreed with Ferreira da Silva (2006) and Yalin (1993). Our contribution with this research is developing SPH 
method for modeling helical flow in a curved channel with the aim of simulating meandering dynamics.  

 
Keywords: Smoothed particle hydrodynamics; free surface; water flow; curved channel; meandering dynamics. 

 
 

1 INTRODUCTION 
Since firstly introduced by (Gingold & Monaghan, 1977), and (Lucy, 1977), SPH gains popularity as a 

mesh-free method because it can overcome problems using fixed grid (Liu & Liu, 2003). The SPH method is 
modeled as an assembly of particles where the interaction zone is assumed to be around each of it. Thus, 
there is no need to describe all terms in governing equation on a fixed grid. The problem using grid arouses 
from the numerical diffusion as a consequence of the advection terms in the equations. On the free surface, 
large deformation yields severe numerical diffusion (Shao & Gotoh, 2005).  

Einstein firstly explained the cause of the formation of meanders in 1926 where streams tend to flow in 
winding and turning course instead of following the downward slope as a result from Coriolis-force (Einstein, 
1926). Even without bends, the helical movement still exists at cross-sections of its course. Meandering not 
only happens on alluvial streams but also on melting water channels on ice (Langbein & Leopold, 1966), wind 
tunnels (Beresh, Henfling, & Spillers, 2010), and submarine channels (Darby & Peakall, 2012).  

Meandering channels research in general are separated, but still correlated, into two approaches: 
geomorphologic and fluid dynamics, where 3D flow modeling receives more attention for its ability to simulate 
helicoidal motion even though it is high in computational efforts and limited to simple geometry (Camporeal, 
Perona, Porporato, & Ridolfi, 2007). However, a computer’s capability is growing hence meandering channel 
can be simulated with a powerful computational fluid dynamics (CFD) tools such as direct numeric simulation 
(DNS), large eddy simulation (LES), or ߢ െ ߳ models (Wormleaton & Ewunetu, 2006).  

CFD is traditionally using grid-based numerical methods, such as finite element methods (FEM) and 
finite volume methods (FVM), which have gained high acceptance ( (Bates, Lane, & Ferguson, 2005), and 
(Wendt, 2009)). In spite of its success, grid-based method has limitations whenever dealing with free surface, 
deformable boundary, moving interface, and extremely large deformation and crack propagation because of 
the use of mesh. Complex geometry problems make generating mesh hard, expensive, and laborious (Liu & 
Liu, 2010). Meshfree methods have emerged as an alternative grid based methods to deliver better accuracy 
and stability numerical solutions for PDEs with all possible boundary conditions using particles (Liu & Liu, 
2003).  

Smoothed particle hydrodynamics (SPH) is one of the most noticeable meshfree methods and now have 
become very popular, and particularly for free surface flows, it is a robust and powerful method for describing 
deforming media (Gomez-Gesteira M. , Rogers, Violeau, Grassa, & Crespo, 2010). SPH main appeals are its 
ability to predict highly strained motions based on a set of particles, and its consistency with Lagrangian and 
Hamiltonian mechanics in terms of conservativity (Violeau, 2012). SPH applications for incompressible or 
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nearly incompressible flow in the last two decades are diverse involving dam breaks and plunging waves, 
gravity currents and multifluid phenomenon, bodies moving in fluids, non-Newtonian fluids, surface tension, 
and diffusion and precipitation (Monaghan J. J., 2012). Advanced hydraulics with SPH so far has been 
covered wave action upon waterworks, fish pass, floating oil spill containment boom, and dam spillway 
(Violeau, 2012).  

SPH is also a hot topic in Computer Graphics (Kelager, 2006) including realistically animated fluids 
(Müller, Charypar, & Gross, 2003), fluid-fluid interaction (Muller et al., 2005), hydraulics erosion (Kristof, 
Beneš, Křivánek, & Št’ava, 2009), and 2D shallow water simulation ( Bender et al., 2011). SPH research in 
CFD, hydraulics, and computer graphics mostly do not focus on flow structures except in turbulence. Thus, 
SPH is a very promising method to answer 3D flow modeling in meander dynamics.  

This research considers the most important characteristics of meandering process, which are flow 
structure, sediment transport, and morpho-dynamic. A curved channel boundary condition represents the 
simplification of meandering geometry. SPH procedures are developed from 3D fluid flow model and collision 
handling between water particles and curved channel boundary conditions, as meandering geometry 
simplification. This paper presents an application of SPH method to develop helical flow because of curvature 
and without sediment transport. 
 
2 MEANDERING FLOW BASIC CHARACTERISTICS 

In river modeling, one-dimensional model is often used due to its efficiency and applied in the study of 
long-term sedimentation problems in rivers. However, flows in curved channels give evidence of complex 
three-dimensional features that have big influences on sediment transport process. Thus, these phenomena 
must rely on three-dimensional model for all practical purposes. Here, the river scale is defined as reach scale 
where the domain is longer than the channel by a factor of at least 5 and up to 50 or more. Considering that 
reach scale is a common scale in management activities such as scour around bridge piers, in-channel 
sedimentation process, bank erosion and channel migration, thus it relates the flow and sediment transport 
around structures, and linkages strongly to morpho-dynamic and habitat process likewise the flow field itself 
(Bates et al., 2005). Development of meander dynamics model has to have a capability to simulate meander 
flow characteristic and sediment transport distribution patterns, or at least having the same capability as the 
finite element method (Wu, 2008). Here, the meander flow is characterized by having helical flow and 
coherent structures (bursts and sweeps), higher flow velocity at the outer banks and lower in the inner banks, 
sediment erosion at the outer banks and deposition in the inner banks, higher sediment concentration at the 
outer banks and lower in the inner banks (Ferreira da Silva, 2006).  
 

 
Figure 1. Basic Characteristics Meandering Process. 

 
3 SMOOTHED PARTICLE HYDRODYNAMICS METHODS  
3.1 Flow Equations 

The Navier-Stokes equation for incompressible and isothermal fluid is presented by: 
 

ߩ
ௗܝ

ௗ௧
ൌ െસ݌ ൅ ܝસ૛ߤ ൅  (1)  ܔ܉ܖܚ܍ܜܠ܍۴

 
with ߩ is mass density (kg/m3), u is vector velocity (m/s), t is time (second), p is pressure (N/m2), ߤ is 

kinematic viscosity (Ns/m2), and F is external force (N). 
 
Equation (1) can be modified into: 
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ߩ
୳ࢊ

࢚ࢊ
ൌ ܔ܉ܖܚ܍ܜܖ۴ܑ ൅ ܔ܉ܖܚ܍ܜܠ܍۴ ൌ ۴   (2) 

Then for each particle I, the acceleration (m/s2) becomes: 

௜܉ ൌ
ܑܝࢊ
࢚ࢊ
ൌ

࢏۴
ఘ೔

  (3) 

 
where ۴ is a sum of force fields, internal forces ۴ܑܔ܉ܖܚ܍ܜܖ and external forces ۴ܔ܉ܖܚ܍ܜܠ܍.  
Considered as internal forces, they are pressure force and viscosity force. For external forces, they are 

regarded as gravitation force, surface tension, and also buoyancy force.  
SPH method uses velocity-pressure formulation to solve the momentum equation. Pressure is correlated 

to density in the thermodynamic equation of state. As introduced by Monaghan (1994) for free surface flow, 
the equation of state has form: 
 

݌ ൌ Bቀቀ
ఘ

ఘబ
ቁ
ఊ
െ 1ቁ  (4) 

 
where ܤ is coefficient where ܤ ൌ

ଶ଴଴௚ு

ఘఊ
ߛ ௢ is rest density (kg/m3), andߩ , ൌ 7. 

If the pressure is known for each particle, at particle ݅, the pressure force is: 
 

௜ࡲ
௣௥௘௦௦௨௥௘ ൌ െ݌׏ሺݎ௜ሻ (5) 

 
Viscosity force at particle ݅ with viscosity ߤ (Ns/m2), is: 

 
௜ࡲ
௩௜௦௖௢௦௜௧௬ ൌ  ௜ሻ   (6)ݎሺ࢛ଶ׏ߤ

 
Gravitation force is: 

 
௜ࡲ
௚௥௔௩௜௧௬ ൌ  (7)    ࢍ௜ߩ

 
The surface tension force is resulted from the force density spreading onto all potential particles.  

 
௜ࡲ
௦௨௥௙௔௖௘ ൌ െσ׏ଶc୧

ܑܖ
|࢏࢔|

     (8) 

 
The buoyancy force is for gaseous fluids and caused by diffusion of temperatures. For isothermal fluid, 

an artificial buoyancy force can be used as: 
 

௜ࡲ
௕௨௢௬௔௡௖௬ ൌ ܾሺߩ௜ െ  (9)    ࢍ଴ሻߩ

 
If simulation is applied for isothermal water, then the buoyancy coefficient can be assumed as zero. 

 
3.2 Particle Approximations 

The mass-density at particle i is approximated as: 
 

௜ߩ ൌ ∑ ௝ܹ݉൫ݎ௜ െ ,௝ݎ ݄൯
ே
௝ୀଵ    (10) 

 
The pressure force with symmetrical form can be written as: 

 

௜ࡲ
௣௥௘௦௦௨௥௘ ൌ െߩ௜ ∑ ൬

௣೔
ఘ೔
మ ൅

௣ೕ
ఘೕ
మ൰ ௝ܹ݉׏൫ݎ௜ െ ,௝ݎ ݄൯௝ஷଵ    (11) 

 
The viscosity force with symmetrical velocity fields is defined as  

: 

௜ࡲ
௩௜௦௖௢௦௜௧௬ ൌ ߤ ∑ ൫࢐࢛ െ ൯࢏࢛

௠ೕ

ఘೕ
௜ݎଶܹ൫׏ െ ,௝ݎ ݄൯௝ஷଵ    (12) 

 
The surface tension force at particle i with symmetrical from is approximated as:  

 

௜ࡲ
௦௨௥௙௔௖௘ ൌ െσ ൤∑

୫ౠ

஡ౠ
௜ݎଶܹ൫׏ െ ,௝ݎ ݄൯	୨ ൨

ቈ∑
ౣౠ
ಙౠ
ௐ൫௥೔ି௥ೕ,௛൯ౠ׏ ቉

|୬౅|
    (13) 

 

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print) 5045



  
          

  

 

where |݊௜| ൒ ݈௜ , and ݈௜ ൐ 0 is some threshold concerning the particle concentration. 
 
3.3 Smoothing Functions (Kernels) 

The most common smoothing function (kernel) is Gaussian function as the best kernel assumption to 
interpret the first golden rule of SPH, according to (Monaghan J. J., 2005). 
 

ܹሺݎ, ݄ሻ ൌ
ଵ

ሺଶగ௛మሻ
య
మ
݁ିሺ

|ೝ|మ

మ೓మ
ሻ ,			݄ ൐ 0   (14) 

 
where |ݎ| is scalar distance between particles. However, it is not always the best, where ܹ ൏ 0 for all ݎ all 
particles within the domain contribute to the calculation. Consequently, the number of particles increases with 
the kernel computational cost in numerical error from particle approximation (Price, 2004). 

Cubic spline kernels are often used for this reason, but in terms of computational accuracy, stability, and 
speed, (Müller, Charypar, & Gross, 2003) designed kernels that have second order interpolation errors. The 
kernels are all even and normalized. Zero kernels with disappearing derivatives at the boundary are 
conductive to stability. The kernel is called poly6, noticeable as a simple kernel, and preserve Gaussian bell 
curve (Kelager, 2006). More importantly according to (Müller, Charypar, & Gross, 2003), r is in form of square 
which can be calculated without computing its square roots. 
 

௣ܹ௢௟௬଺ሺݎ, ݄ሻ ൌ
ଷଵହ

଺ସగ௛వ
൜
ሺ݄ଶ െ ,		ଶሻଷ|ݎ| 0 ൑ |ݎ| ൑ ݄
0 |ݎ|									,																		 ൐ ݄

  (15) 

׏ ௣ܹ௢௟௬଺ሺݎ, ݄ሻ ൌ െ
ଽସହ

ଷଶగ௛వ
ሺ݄ଶݎ െ  ଶሻଶ  (16)|ݎ|

ଶ׏ ௣ܹ௢௟௬଺ሺݎ, ݄ሻ ൌ െ
ଽସହ

ଷଶగ௛వ
ሺ݄ଶ െ ଶሻሺ3݄ଶ|ݎ| െ  ଶሻ  (17)|ݎ|7

 
where |ݎ| ൌ   .௜௝ which is the particle distance between particle i and jݎ

But kernel poly6 has disadvantage, under high pressure, particles using this kernel are likely to develop 
clusters. As a result, the repulsion force is gone whenever particles move very close to each other since the 
kernel gradient becomes zero at the center. Therefore, we are using spiky kernel as proposed by (Desbrun & 
Gascuel, 1996), (Müller, Charypar, & Gross, 2003) and (Kelager, 2006). Gradient and Laplacian of spiky 
kernel are vanished at the boundary. This is necessary to generate repulsion forces. 
 

௦ܹ௣௜௞௬ሺݎ, ݄ሻ ൌ
ଵହ

గ௛ల
൜
ሺ݄ െ ,		ሻଷ|ݎ| 0 ൑ |ݎ| ൑ ݄
0				 |ݎ|														,							 ൐ ݄

  (18) 

׏ ௦ܹ௣௜௞௬ሺݎ, ݄ሻ ൌ െ
ସହ

గ௛ల
௥

ሽ௥|
ሺ݄ െ 		,	ሻଶ|ݎ|

݈݅݉௥→଴ష ߘ ௦ܹ௣௜௞௬ሺݎ, ݄ሻ ൌ
ସହ

గ௛ల
			,		݈݅݉௥→଴శ ߘ ௦ܹ௣௜௞௬ሺݎ, ݄ሻ ൌ െ

ସହ

గ௛ల
 

(19) 

ଶ׏ ௦ܹ௣௜௞௬ሺݎ, ݄ሻ ൌ െ
ଽ଴

గ௛ల
ଵ

|௥|
ሺ݄ െ ሻሺ݄|ݎ| െ ሻ|ݎ|2 ,		

݈݅݉௥→଴׏ଶ ௦ܹ௣௜௞௬ሺݎ, ݄ሻ ൌ െ∞				 

(20) 

 
Particular kernel for viscosity forces is designed by (Müller, Charypar, & Gross, 2003) to get positive 

result of the Laplacian. Negative result of viscosity forces due to negative Laplacian kernel increases particles 
relative velocity, thus it can cause instability numerical computation. The relative viscosity can be damped by 
the viscosity forces on condition that the Laplacian is positive everywhere in the calculation domain (Kelager, 
2006). 
 

௩ܹ௜௦௖௢௦௜௧௬ሺݎ, ݄ሻ ൌ
ଵହ

ଶగ௛య
൝
െ

|௥|య

ଶ௛య
൅

|௥|మ

௛మ
൅

௛

ଶ|௥|
െ 1 , 0 ൑ |ݎ| ൑ ݄

0 																												 , |ݎ| ൐ ݄
,   ݈݅݉௥→଴ ௩ܹ௜௦௖௢௦௜௧௬ሺݎ, ݄ሻ ൌ ∞	     (21) 

׏ ௩ܹ௜௦௖௢௦௜௧௬ሺݎ, ݄ሻ ൌ
ଵହ

ଶగ௛య
ݎ ቀെ

ଷ|௥|

ଶ௛య
൅

ଶ

௛మ
െ

௛

ଶ|௥|య
ቁ  ,      

݈݅݉௥→଴ ௩ܹ௜௦௖௢௦௜௧௬ሺݎ, ݄ሻ ൌ ൅∞	 ,   ݈݅݉௥→଴ ௩ܹ௜௦௖௢௦௜௧௬ሺݎ, ݄ሻ ൌ െ∞        

(22) 

ଶ׏ ௩ܹ௜௦௖௢௦௜௧௬ሺݎ, ݄ሻ ൌ
ସହ

గ௛ల
ሺ݄ െ  ሻ      (23)|ݎ|

 
4 NUMERICAL EXPERIMENTAL SETUPS  
 
4.1 Algorithm 

Input parameters were fluid properties, common physics and SPH properties. Initial conditions were 
velocity and position for each particle at zero time, and determined as input model. From the input, total force 
and density for each particle was calculated. Total force equals to the summation of internal forces (pressure 
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and viscosity), and external forces (gravity and surface tension). Then, it computes acceleration with (3) from 
total force divided by density for each particle.  

Afterwards, it updates new velocity and new position from the acceleration for each particle at each time 
step. Later, this new velocity and new position will be used to calculate new total force and new density for 
each particle at next time step. The new total force and new density will be applied to compute new 
acceleration, and so on until it reaches maximum time step in the end. 

If we define space, for each new velocity and new position, it checks collision between particles and its 
boundary conditions before it goes to the next time step. The space is set as a curved channel, and the 
collision determines water flow movement, in this case is the primary flow.  
 
4.2 Collision Handling at Curved Channel 
 
4.2.1 Boundary Conditions 

Meander morphology is a very complex geometry. Thus, we need to simplify it into a curved channel in 
order to separate the effect of helical flow formation from complex geometry. Collision handling works 
whenever there is contact with the walls; four straight walls and four quarter-circle walls. At t = t, coordinate of 
a particle i is ሺݔሺ݅ሻ, ,ሺ݅ሻݕ ,ሺ݅ሻݐݔሺ݅ሻሻ, and at t = t + dt, its coordinate becomes ሺݖ ,ሺ݅ሻݐݕ  ሺ݅ሻሻ. A contact point isݐݖ
ሺܿݔሺ݅ሻ,  ሺ݅ሻ. We consider that curved channel has very highܿݖ ሺ݅ሻሻ where a particle collides with a wall at anyܿݕ
wall. At this time, we use Snell’s law where angle and velocity of incidence equals to angle and velocity 
refraction. Center of curved channel has coordinate at x- and y-coordinate ሺݎݔ, ሻݎݕ ൌ ሺ2, 3ሻ, and any z-
coordinate zr. Radius of outer hemisphere from the center is ݎݎ ൌ  and of inner hemisphere is ,ݎ݁ݐ݁݉	2
2ݎݎ ൌ ݁ݏܾܽݖ The bed of curved channel is set up at .ݎ݁ݐ݁݉	1 ൌ  .for all x- and y-coordinates ݎ݁ݐ݁݉	0
Coordinate in ݔ-direction in meter for each plane wall are 1݁ݏܾܽݔ ൌ s݁2ܾܽݔ ,0 ൌ 3݁ݏܾܽݔ ,1 ൌ 3, and 4݁ݏܾܽݔ ൌ
4. Angle of refraction is in radians, and depends on quadrant of particle coordinate.  

Area of particle movement is wherever (1) ݕሺ݅ሻ is less than ݎݕ then particle collision uses algorithm for 
plane walls, or (2) ݕሺ݅ሻ is greater than or equivalent to ݎݕ thus particle collision utilizes algorithm for curved 
walls. A particle collides a plane wall whenever (1) ݐݔሺ݅ሻ ൑ 2݁ݏܾܽݔ (2) ,1݁ݏܾܽݔ ൑ ሺ݅ሻݐݔ ൑  or (3) ,3݁ݏܾܽݔ
4݁ݏܾܽݔ ൑  ,ሺ݅ሻ. Calculation of contact point is determined as in the followingݐݔ
 

ሺ݅ሻܿݔ ൌ  depends where a particle collides (24) , ݁ݏܾܽݔ

ሺ݅ሻܿݕ ൌ ሺ݅ሻݕ െ ቀ
൫௫ሺ௜ሻି௫௖ሺ௜ሻ൯∗൫௬ሺ௜ሻି௬௧ሺ௜ሻ൯

௫ሺ௜ሻି௫௧ሺ௜ሻ
ቁ  (25) 

ߛ ൌ ݊ܽݐܽ ቀ
௬௖ሺ௜ሻି௬௧ሺ௜ሻ

௫௖ሺ௜ሻି௫௧ሺ௜ሻ
ቁ  (26) 

 
Collision condition at curved channel whenever radius of a particle relatively to the center of a curved 

channel is (1) greater than outer hemisphere radius ሺݐݔݎ ൐   ሻ, or (2) less than inner hemisphere radiusݎݎ
ሺݐݔݎ ൏    .2ሻݎݎ
 

ݐݔݎ ൌ ඥሺݐݔሺ݅ሻ െ ሻଶݎݔ ൅ ሺݐݕሺ݅ሻ െ  ሻଶ  (27)ݎݕ

 
Contact point is located at hemisphere. There are two initial guesses ܿݔሺ݅ሻ and ܿݕሺ݅ሻ. Coordinate ܿݕሺ݅ሻ is 

estimated between ݕሺ݅ሻ and ݐݕሺ݅ሻ. Computation of ܿݕሺ݅ሻ uses bisection method (Chapra & Canale, 2010) and 
(Cheney & Kincaid, 2008), afterward ܿݔሺ݅ሻ is calculated under condition, if 

rxt > rr then, 
 

ሺ݅ሻܿݔ 	ൌ ݎݔ	 െ ൫ሺሺݎݎ ൅ ሺ݅ሻܿݕ െ ሻ଴.ହሻݎݕ ∗ ሺሺݎݎ െ ሺ݅ሻܿݕ ൅ ሺ݅ሻݐݔሻ଴.ହሻ൯, ሺݎݕ ൑  ሻ (28)ݎݔ
ሺ݅ሻܿݔ ൌ ݎݔ	 ൅ ൫ሺሺݎݎ ൅ ሺ݅ሻܿݕ െ ሻ଴.ହሻݎݕ ∗ ሺሺݎݎ െ ሺ݅ሻܿݕ ൅ ሺ݅ሻݐݔሻ଴.ହሻ൯, ሺݎݕ ൐  ሻ (29)ݎݔ
 
rxt < rr2 then, 

 
ሺ݅ሻܿݔ 	ൌ ݎݔ	 െ ൫ሺሺ2ݎݎ ൅ ሺ݅ሻܿݕ െ ሻ଴.ହሻݎݕ ∗ ሺሺ2ݎݎ െ ሺ݅ሻܿݕ ൅ ሺ݅ሻݐݔሻ଴.ହሻ൯, ሺݎݕ ൑  ሻ (30)ݎݔ
ሺ݅ሻܿݔ ൌ ݎݔ	 ൅ ൫ሺሺ2ݎݎ ൅ ሺ݅ሻܿݕ െ ሻ଴.ହሻݎݕ ∗ ሺሺ2ݎݎ െ ሺ݅ሻܿݕ ൅ ሺ݅ሻݐݔሻ଴.ହሻ൯, ሺݎݕ ൐  ሻ (31)ݎݔ
 
After contact point coordinates is set up, radius of contact point from the center of hemisphere is 

calculated only to check whether the radius falls right at one of hemisphere walls. 
 

ܿݎ ൌ ඥሺܿݔሺ݅ሻ െ ሻଶݎݔ ൅ ሺܿݕሺ݅ሻ െ  ሻଶ  (32)ݎݕ

 
Refraction angle computation depends on where the location of contact point. The angle detection varies 

by hemisphere radius, slope between contact point and curved channel center, and contact point quadrant. 

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print) 5047



  
          

  

 

If ݐݔݎ ൐  ,where a particle lies outside outer hemisphere then 2ݎݎ
 

݉ܿ	 ൌ 	 ቀ
ሺ௥௥ି௫௖ሺ௜ሻା௫௥ሻబ.ఱ

ଶ.∗ሺሺ௥௥ା௫௖ሺ௜ሻି௫௥ሻబ.ఱሻ
ቁ െ ቀ

ሺ௥௥ା௫௖ሺ௜ሻି௫௥ሻబ.ఱ

ଶ.∗ሺሺ௥௥ି௫௖ሺ௜ሻା௫௥ሻబ.ఱሻ
ቁ  (33) 

 
Else if ݐݔݎ ൏  ,where a particle remains inside inner hemisphere then 2ݎݎ

 

݉ܿ	 ൌ 	 ቀ
ሺ௥௥ଶି௫௖ሺ௜ሻା௫௥ሻబ.ఱ

ଶ.∗ሺሺ௥௥ଶା௫௖ሺ௜ሻି௫௥ሻబ.ఱሻ
ቁ െ ቀ

ሺ௥௥ଶା௫௖ሺ௜ሻି௫௥ሻబ.ఱ

ଶ.∗ሺሺ௥௥ଶି௫௖ሺ௜ሻା௫௥ሻబ.ఱሻ
ቁ  (34) 

 
Next steps are calculation of refraction angle ߛ: 

 
	1ݔ ൌ 	 ݎݔ	
	1ݕ ൌ ሺ݅ሻܿݕ	 	൅ 	݉ܿ ∗ ሺ1ݔ െ   ሺ݅ሻሻܿݔ

(35) 

	ߙ ൌ ݊ܽݐܽ	 ቀ
௬ଵି௬௖ሺ௜ሻ

௫ଵି௫௖ሺ௜ሻ
ቁ  (36) 

	ߚ ൌ ݊ܽݐܽ	 ቀ
௬௧ሺ௜ሻି௬௖ሺ௜ሻ

௫௧ሺ௜ሻି௫௖ሺ௜ሻ
ቁ  (37) 

	ߙ ൌ ݊ܽݐܽ	 ቀ
௬ଵି௬௖ሺ௜ሻ

௫ଵି௫௖ሺ௜ሻ
ቁ  (38) 

	ߠ ൌ ߚ െ  (39)  ߙ

	ߟ ൌ ݊ܽݐܽ	 ቀ
௬ሺ௜ሻି௬௖ሺ௜ሻ

௫ሺ௜ሻି௫௖ሺ௜ሻ
ቁ  (40) 

 
The challenging part is where we have to identify the particle position quadrant, because previously we 

have to determine its incidence angle quadrant as relative to its contact point. After refraction angle of each 
particle is calculated, each particle position is updated where: 
 

ሺ݅ሻݐݔܿݎ 	ൌ 	 ቀ൫ݐݔሺ݅ሻ െ ሺ݅ሻ൯ܿݔ
ଶ
൅ ൫ݐݕሺ݅ሻ െ ሺ݅ሻ൯ܿݕ

ଶ
ቁ
଴.ହ

  (41) 

ሺ݅ሻݐݔ 	ൌ ሺ݅ሻܿݔ	 ൅ ሺ݅ሻݐݔܿݎ ∗ cosሺߛሻ  (42) 
ሺ݅ሻݐݕ 	ൌ ሺ݅ሻܿݕ	 ൅ ሺ݅ሻݐݔܿݎ ∗  ሻ  (43)ߛሺ݊݅ݏ
ሺ݅ሻݐݖ 	ൌ 	2 ∗ ݁ݏܾܽݖ െ  ሺ݅ሻ  (44)ݐݖ
ሺ݅ሻݐݔݒ 	ൌ 	 ሺሺݐݔݒሺ݅ሻ ∗∗ 2 ൅ ሺ݅ሻݐݕݒ ∗∗ 2ሻ ∗∗ 0.5ሻ ∗  ሻ  (45)ߛሺݏ݋ܿ
ሺ݅ሻݐݕݒ 	ൌ 	 ሺሺݐݔݒሺ݅ሻ ∗∗ 2 ൅ ሺ݅ሻݐݕݒ ∗∗ 2ሻ ∗∗ 0.5ሻ ∗  ሻ  (46)ߛሺ݊݅ݏ
ሺ݅ሻݐݖݒ 	ൌ 	െ1 ∗  ሺ݅ሻ  (47)ݐݖݒ

 
4.2.2 Initial Conditions, Parameters and Properties 

The free surface water system is defined as shallow water and long wave (Ji, 2008). Time step is defined 
for each time integration calculation and based on number of Courant-Friedrichs-Lewy (CFL) to check the 
numerical stability in the computation (Kao & Chang, 2012) and (Chapra C. S., 1997).  
 

Δݐ ൌ ܮܨܥ ∗ min ቀ
௛

௖೔ା|௩ሬԦ೔|
ቁ  for  0 ൑ ܮܨܥ ൑ 1  (48) 

 
where h is the SPH computation domain radius or smoothing length, ܿ௜ is gravity wave speed of propagation, 
and |ݒపሬሬሬԦ| is the magnitude of velocity for particles.  

There are 4811 particle numbers. Initial time, set at ݐ ൌ 0, all particles forms as a cube with dimension of 
1 meter width by 1 meter length by 1 meter height, and weighs 0.9622 kilogram. Initial velocity is set at 
variation afterwards in order to see particles flow behavior. Particle number independence test is done by 
using particle number resolution at initial from 1000 to 9622 particles. The solution is independent to particles 
number at 4811 particles. Parameters in numerical simulation are common, fluid, and SPH properties as 
shown in Error! Reference source not found.. Noted that simulations use 0.01 second for each time step. 
This value is chosen after several trials from 0.001 second up to 1 second, and checked with Courant number 
in equation (48). If the time step is smaller than 0.01, the simulations take a longer computation time 
especially for big particle numbers. If the time step is bigger than 0.01, the simulation computations become 
unstable and stuck in the middle of running program. Discretizing fluid system into large particle number 
results in consistent accuracy but also high runtime computation as stated by (Liu & Liu, 2003). In this 
research, we varied particle number from 10 up to 4000 particles. Nevertheless, this simulation uses 4811 
particle numbers to gain the accuracy of the solution. Fluid properties and modeling parameter are simulated 
through several loops in order to see how the system responds under parameters variation of density and 
pressure. 
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5 RESULTS AND DISCUSSIONS 
 
5.1 Results  

SPH program run water simulations in a curved channel for inviscid, viscous flow, vorticity, mass, 
viscosity, gravity, and surface tension. Simulation runs from zero to fifteen seconds. Initial condition was 
inviscid flow where ݋ݕݒ	 ൌ  At first in straight channel, particles moved straight forward. When they .ݏ/݉	0.8	
entered in the curved part, they collided and turned directions as caused by collisions with curved walls. The 
collisions transferred momentum from outer to inner curved wall, then bounced back, and keep rebounding 
until they exit the curved part.  
 

 
Figure 2. Particle flows with water properties from t = 0, 3, 6, 9, 12, and 15 second (from upper left in 

clockwise direction); colors represent velocity [m/s] 
 

This pattern may appear as helical but if a particle flow path were to be looked closely, the refraction 
angle is to sharp, as in Figure 2. This can be happened due to collision handling method. At this time, the 
contact between particle and boundary is governed by Snell’s law.  

Figure 3 shows a particle flow path that run from 0 to 15 seconds from the simulation in preceding Figure 
2. The pattern is quite satisfactory in a plan view, but in 3D view we see a hooping bug movement or a particle 
jumping in vertical direction in upper left  

Figure 3. This is happened because the magnitude of gravity force is rather dominant than pressure 
force, viscosity force, and surface tension force. The ratio of gravity force to other force ranges between 100 
to 150 times bigger.  

In order to solve the jumping particles movement, the main parameters in vertical forces are gravity and 
particle mass, and these will be varied. Firstly, we reduce the gravity acceleration into 1% of its magnitude. 
Secondly, we set zero gravity, and lastly, we decrease the mass into 10% mass as displayed in  

Figure 3. In upper right figure, since we use 1% coefficient of gravity, the particle movement in time is no 
longer jumping. However, if we set zero gravity, the particle movement is expanding and ascending towards 
the initial location as in lower left figure. The last one, we reduce the mass into 10%, the particle moves 
randomly without any pattern as in lower right figure. We can conclude that flow simulation using water 
properties develops velocity predominantly governed by gravity. Despite the fact above, we have settled that 
all parameter magnitudes are within sensitivity range and none is dominant. Consequently, a question 
emerges why the magnitude is imbalanced between gravity forces with other forces. Therefore, we need to 
consider the effect of gravity magnitude, and each fluid properties that were employed in momentum equation. 
We run eight cases of water flow simulations to test the which parameter(s) is(are) sensitive in generating 
helical flow.  

SPH simulations with initial viscous flow have shown that viscous effect plays significant role in the 
formation of helical flow. In order to magnify the strength of helical formation, the simulation adds both vorticity 
and viscous effects at initial velocities. Particles move faster, smoothly swirl through the hemisphere, and flow 
towards the downstream. As expected, the helical flow starts to form in the downstream of the hemispheres.  

From discussion above, we just focus in the hemisphere part of curved channel. Then we look farther at 
the downstream of hemisphere. Helical flow is formed after water flows exit the hemisphere of Figure 4. Some 
particles move from channel bottom towards outer wall then they swirl up backward against outer wall. This 
motion initiates helical flow. The helical shape can be improved by varying magnitudes of initial vorticity and 
viscous flow. 
 

 

t = 0 s t = 3 s t = 6 s

t = 9 s t = 12 s t = 15 s
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Figure 3. Particles collision handling (upper left) with gravity, (upper right) with 1% * gravity, (lower left) 

without gravity, and (lower right) with 10% mass; colors represent velocity [m/s] 
 
5.2 Discussions 

Wang and Liu (2015) described their findings from experimental investigation of flow structures in a bend 
flume. We use these experimental results to compare with SPH results and RMA results for verification. The 
channel geometry in SPH is adjusted with respect to their experimental set up. Width channel is 0.30 meter, 
initial depth is set at 0.16 meter, center coordinate of the hemispheres is (0.80, 0.80, z) meters, inner 
hemisphere radius is 0.50 meter, and outer hemisphere radius is 0.80 meter.  

At first, when coefficient gravity was used, particles were flowing and expanding like gas. At the cross 
section intended in Figure 4, depth of particles flow became 11 meter instead of 0.2 meter. It was because the 
gravity force was too weak due to the coefficient we set at the equation. Then, coefficient is taken out from the 
gravity force equation. Afterwards, particles behave like water as in Figure 4 where the average depth is less 
than 0.2 meter, its velocity range close range between 0.50 m/s and 2.50 m/s. 

Particles start to move in helical formation even though it is not strong. From the bottom, some particles 
move towards outer wall then they turn back against outer wall. From particles calculation, at t = 2.35 s, 
average velocity is 1.29 m/s with minimum 0.04 m/s, and maximum 2.82 m/s. Average relative pressure is 
0.034 Pa, with minimum 0.003 Pa and maximum 0.188 Pa. Average density is 4383.8 kg/m3, with minimum 
1392.6 kg/m3 and maximum 19798.9 kg/m3. At this point, that the particles calculation can be considered to 
behave close to the experiment result as in Figure 4.  
 

Figure 4. Helical formation with SPH simulation, initial vorticity viscous flow, and results at t = 2.35 seconds, (b) 
Checking angle refraction for a particle interaction; colors represent velocity [m/s] 

  
In Figure 5, high pressure and high density particles coordinates are located with the same low velocity 

particle coordinates. This is reasonable since crowded particles push particles to its surrounding but it is 
limited to space. Particles movement was decelerated. Thus, particles have high pressure. 
 

(a) 

(b) 
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Figure 5. Particles value of: (a) velocity [m/s], (b) pressure [Pa], and (c) density [kg/m3] 

 
Simulation with RMA (Resources Model Association is run with the same setting with Wang and Liu’s 

(2015) experiments. Here, we used RMA-10 version 87e in 20 November 2012) (King, 2012). Helical flow 
pattern from SPH model in Figure 4 has the same pattern with helical flow patterns from RMA model in Figure 
6 (a), and follows the pattern with the experiment results in Figure 6 (b). Helical formation with SPH, RMA, and 
even in the experiments is not fully in circular shape but rather has tendency to form like a spinal cord. At the 
bottom channel, velocity vectors move toward outer bank then sweeps back to inner bank near water surface, 
and forms helical motion. This helical flow pattern is consistent with the patterns from very recently experiment 
investigation by Wang and Liu (2015) in Figure 6 (b), and theoretical sketch of helical flows in a curved 
channel by Wormleaton and Ewunetu (2006). 
 

 
Figure 6. (a) Helical formation with RMA simulation at t = 1.5 seconds; colors represent velocity [m/s], (b) 

Helical formation from experiment investigation of flow structures (Wang & Liu, 2015) 
 
6 CONCLUSIONS 

Initial velocities drift the fluid particles and work as an advective term, while the densities and pressures 
expand the fluid's volume and act as a dispersive term. Up to this point, the 3D flow SPH program gives a 
stable result as expected from fluid properties. In running time integration based on Verlet method, the 
program runs smoothly for each given time. The basic of SPH is presented in the order from its formulations, 
integral representations and kernel functions, and particle approximations. The SPH formulations are 
developed for 3D fluid flow and sedimentation transport equations. The logical frame of the program 
development is drawn in an algorithm, and the program code is written in FORTRAN language. The numerical 
experimental results show that the program has capability to simulate the basic behavior of fluid properties as 
the basis characteristics of meandering river. The calculation is stable during the time looping for the given 
initial particles conditions. The very basic characteristic in meandering dynamics is helical flow, which is 
initiated by adding up viscous flow and vorticity at initial conditions. Its formation is generated at downstream 
hemispheres part of the curved channel. Viscous flow plays the main role in the development of helical flow. 
The helical flow pattern is consistent with the patterns from very recently experiment investigation by Wang 
and Liu (2015), and theoretical sketch of secondary flows in a curved channel by Wu (2008) and Wormleaton 
& Ewunetu (2006). SPH method is able to predict realistically helical flow as a result of curvature. agreed with 
Camporeal et al. (2007), and even without sediment transport, agreed with da Silva (2006) and Yalin (1993).  

SPH becomes popular in Hydraulics community. Our contribution with this research is developing SPH 
method for modeling helical flow in a curved channel with the aim of simulating meandering dynamics. This is 
aligned with the advancement of SPH in Hydraulics. Four grand challenges in SPH applications in Hydraulics, 
according to SPHERIC community (Violeau & Rogers, 2015), are convergence, numerical stability, boundary 
conditions, and adaptivity. This research participates in the two of the SPH challenges; (1) boundary 
conditions where we used simple geometries based on Snell’s law to represent basic particle responses to 
channel walls, and (2) adaptivity where we adapted SPH for nearly incompressible method for basic 
hydraulics phenomenon in a curved channel that is note bene an incompressible flow.  

b..a. 

(a) (b)
(c) 
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ABSTRACT 
 
In a broad range of applications of hydro- and environmental system modeling, the flow field is computed by the shallow 
water equations. The flow field is then used to compute the physical processes that depend on it, e.g., transport of a 
passive tracer, sediment transport and morphodynamics or infiltration. Thus, a scientific code for the computation of 
these type of hydro- and environmental problems is required to be flexible and extendable such that different processes 
can be added or removed to the existing code with reasonable effort. Object-Oriented Programming (OOP) concepts 
that enable abstraction by class encapsulation, polymorphism and class inheritance, are very suitable to design a code 
that fulfills the aforementioned requirements. In this contribution, we present the in-house scientific modeling framework 
Hydroinformatics Modeling System (hms), developed at the Chair of Water Resources Management and Modeling of 
Hydrosystems, Technische Universität Berlin, as an example of OOP in application. We discuss the design patterns 
used in the framework and show the advantages of the OOP approach in test cases that involve coupled processes. 
Firstly, contaminant transport in an idealized section of Panke river, Berlin, is simulated. Here, the contaminant does not 
influence the flow and the coupling is only in one way. In a second test case, we couple sediment transport and 
morphodynamics with the shallow water flow. This is a more complex case, because the transported sediment 
concentration acts as a momentum sink term in the shallow water flow. Thus, the processes interact with each other in 
both directions. We conclude that while OOP slightly increases the computational cost and the complexity of the code, 
applying the OOP concepts results in the code that allows easy implementation and coupling of different physical 
processes in an existing framework. 
 
Keywords: Shallow water model; coupled modeling; object-oriented programming; java for scientific computing; design 

patterns. 
 

 
1 INTRODUCTION  
 The depth-averaged two-dimensional shallow water equations are used in a broad range of simulations 
concerning hydro- and environmental systems. Some examples are the modeling of river hydraulics coupled 
with the spreading of contaminants or habitats (Lange et al., 2015; Matta et al., 2016), rainfall-runoff with 
infiltration (Mügler et al., 2011; Simons et al., 2014), coupled with subsurface flow (Liang et al., 2007; Viero et 
al., 2014) and dam-break flow simulations with sediment and bedload transport and morphodynamics (Cao et 
al., 2004; Zhao et al., 2016).  
 As pointed out in Busse et al. (2012), traditional scientific code is usually targeting computational 
efficiency and is limited to compute a limited number of processes. Adding new physical processes into these 
type of codes is usually difficult and might require rewriting a large part of the code. However, the 
interdisciplinary and complex nature of modeling hydro- and environmental systems requires modeling 
approaches that enable adding physical processes from different scientific disciplines, e.g., implementing 
sediment transport and morphodynamics into an existing shallow water model code, with a reasonable 
amount of effort. Thus, it is desirable that a large part of the code is implemented in a generalized way and 
encapsulated such that it can be applied to more than one process. In software engineering, this is often 
referred to as code modularity and reusability (Tchon, 1995). 
 Object-Oriented Programming (OOP) concepts enable to obtain modularity and reusability by class 
encapsulation, polymorphism and class inheritance (Katsurayama et al., 2004). In addition, techniques such 
as generic programming provide further tools for abstraction and generalization (Stroustrup, 2007). The idea 
of applying OOP to scientific code for the solution of partial differential equations has been suggested by 
several researchers (Tchon, 1995; Cambier and Gazaix, 2002; Katsurayama et al., 2004; Rodríguez-Gómez 
et al., 2004; Heng and Mackie, 2009; Busse et al., 2012; Simons et al., 2014) as it gives the code flexibility, 
because different objects, i.e. processes, can be implemented into the framework without the need of 
extensive modification. As Katsurayama et al. (2004) note, the choice of class extraction, i.e. the decision of 
what type of objects to create, is very significant. Here, a poor choice often leads to complicated code which 
runs slowly and is difficult to read and maintain. Thus, special care has to be given here. 
 In contrast, non-object-oriented programming, also referred to as procedural programming, enables 
abstraction only at a functional level (Cambier and Gazaix, 2002). It is generally agreed on that procedural 
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programming yields more computationally efficient code that is more difficult to extend and maintain (Tchon, 
1995; Cambier and Gazaix, 2002; Katsurayama et al., 2004). In Katsurayama et al. (2004), for the specific 
case of a shock-tube problem for the two-dimensional Euler equations, the OOP code is 7 times slower than 
the procedural code.  
 As an example of OOP, we present and discuss the in-house scientific modeling framework 
Hydroinformatics Modeling System (hms), which is being developed at the Chair of Water Resources 
Management and Modeling of Hydrosystems, Technische Universität Berlin, since 2005. The hms is written 
entirely in the Java programming language in an object-oriented way. The aim of hms is to enable the 
coupling of different physical processes for research purposes, thus its main priority is to enable a comfortable 
way to implement new processes and technologies rather than computational efficiency. However, it is noted 
that if the computational efficiency is low, the code can also not be considered as suitable for research. The 
main issue then becomes to the finding of a good trade-off between flexibility and efficiency. 
 The aim of this paper is to present an OOP concept-based model design for the coupled simulation of 
shallow water flow and related processes. The paper is structured as follows: the abstractions and design 
patterns used in hms are presented. Then, we show the advantages of OOP concepts in test cases that 
involve coupled processes: contaminant transport in an idealized river system and dam-break flow coupled 
with sediment transport and morphodynamics. Finally, conclusions are given. 
 
2 NUMERICAL SCHEME 
 The depth-averaged two-dimensional shallow water, tracer transport and morphodynamics equations 
presented in Cao et al. (2004) are solved using a cell-centered second order MUSCL scheme (Hou et al., 
2013), with an explicit two-stage Runge-Kutta scheme in time. Numerical fluxes are calculated using a Harten, 
Lax and van Leer approximate Riemann solver with the contact wave restored (HLLC) (Toro et al., 1994). 
 
3 OBJECT-ORIENTED PROGRAMMING 
 
3.1 Geometry and mesh construction 
 In hms, all geometry objects are derived from the geometry-class. The most fundamental geometry 
objects are the point-object, the line-object, the polyline-object and the polygon-object, cf. Figure 1 (left). 
 In Busse et al. (2012), several existing scientific software codes are analyzed and the following 
similarities are pointed out: all codes run simulations on a mesh in order to update state variables, whereby a 
mesh can be abstracted as a collection of elements and variables can be abstracted as vectors. 
Consequently, the cell-object and the edge-object are derived from the element-class. As shown in Figure 1 
(right), a cell can either be a triangular or a quadrilateral cell. Since the mesh is considered as a collection of 
element-objects, it can consist of either triangular or quadrilateral cells. Neighborship relations are stored at 
the edge-elements. This way, the topology of the mesh is determined independently from the cell type. Since 
each edge is also an element, state variables can also be stored at the edges. This has been utilized, e.g., in 
Özgen et al. (2016), where a specialized form of the shallow water equations has been implemented in hms 
that requires to store porosity terms at each edge. In addition to state variables, each element also stores its 
centroid, which is a point-object.  
 

 
Figure 1. Class inheritance in geometry-objects (left) and element-objects (right). 

 
3.2 Layer-based design concept for data structure 

Simons et al. (2014) pointed out that physical processes usually can be written in the form of 
conservation or balance laws that can be solved with the same numerical methods, e.g. a Godunov-type finite 
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volume scheme (Godunov, 1959). This fact is then exploited to encapsulate different physical processes as 
separate objects called layers. The layer-object describes the state variables of a physical process, cf. Figure 
2 (top). For example, if the layer describes shallow water flow, it contains the state variables water depth, 
water elevation, bed elevation, flow velocity and unit discharge. The tracer transport layer contains the state 
variables water depth, flow velocity, unit discharge, concentration and tracer discharge. In a coupled transport 
simulation, the values for water depth, flow velocity and unit discharge would be computed in the shallow 
water flow layer and then mapped to the tracer transport layer. Note that in the layer-objects, no discrete 
values for the state variables are assigned. The layer-object solely declares which variables exist in the 
physical process and stores indices for the variables (integer values). The discrete values of and the 
relationship between the state variables are defined in the values-objects, which are defined for each layer 
separately. During the computation, the values of the state variables can then be accessed by the 
getValues(int)-method of the values-object, where the input is the variable index defined in the layer-object, cf. 
Figure 2 (bottom). 
 

 
Figure 2. Class inheritance in layer-objects (top) and values-objects (bottom). 

 

 
Figure 3. Strategy pattern applied to values-objects. 

 
 In hms, a strategy pattern was then applied to specify the type of state variables inside the element as 
shown in Figure 3. We note that each values-object has different state variables, as shown in Figure 2 
(bottom) and since the element-object does not need to know what specific class of values it contains, 
exchanging the state variables, i.e. exchanging physical processes, becomes easy (Katsurayama et al., 
2004). We acknowledge that the proposed data encapsulation may introduce additional cost to access data. 
This is a known issue of OOP (Cambier and Gazaix, 2004), however, the benefit of the additional flexibility 
and readability of the code which reduces maintenance cost may outweigh the performance penalty. 
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3.3 Generalized numerical scheme and solver for updating state variables 
A generalized numerical scheme to solve conservation laws can be abstracted as follows: 
1. initialize state variables; 
2. preparation step prior to global loop; 
3. compute values of conservative variables; 
4. compute flux terms; 
5. compute source terms; 
6. update independent state variables; 
7. update dependent state variables (required if there are two layers that depend on each other). 

 
 Using this, a general scheme-interface can be implemented, and different numerical schemes can be 
derived by class inheritance as shown in Figure 4 (left). 
 

  

Figure 4. Class inheritance in scheme-objects (left) and in solver-objects (right). 
 
 We note that in Figure 4 (left), the Lax-Friedrichs scheme does not need to implement the Riemann 
scheme interface, because it does not require the computation of Riemann states.  
 In hms, the scheme object operates locally on the cells. The global loop over the elements in the whole 
mesh was carried out by the solver-object that calls the functionalities of the scheme-object while iterating 
over the entire mesh. The class inheritance of the solver-object is shown in Figure 4 (right). Using generic 
programming, a list of generic schemes was created (in Java-syntax List<S extends Scheme> schemes). 
Using a strategy pattern, schemes were added and removed easily from the solver-object. This way, one can 
add a shallow water flow scheme to the list, then add a tracer flow scheme to the list, and the solver would 
solve the governing equations for each scheme. As a last remark, we note that several approximate Riemann 
solvers exist, e.g., HLLC Riemann solver (Toro et al., 1994) and Roe Riemann solver (Roe, 1981), that are 
encapsulated as separate objects. Again, a strategy pattern was applied to the GodunovFvmSolver (Figure 4 
(right)), to enable easy exchange of approximate Riemann solvers. 
 
3.4 Generalized numerical engine for time stepping 
 While the solver is responsible for the global loop over the mesh elements, the time loop was carried out 
by the engine-object (Figure 5 (left)). The engine-object contains the gear-object (Figure 5 (right)), which 
specifies the task to be carried out by means of so-called job-objects, denoted in a generic programming way 
as J in Figure 5 (right). A job is essentially a so-called enumerated type, and can be one of the following: 
prepare, solve, solve_2nd_order, update, initiate_cells, initiate_edges. The gear-object implements the 
Runnable-interface, which is a standard Java language interface that enables multithreading, i.e. parallel 
computation. In essence, the engine sets the type of job to be carried out by the gear-object, which then 
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delegates the job to the solver-object (Figure 4 (right)). The job solve_2nd_order indicates second order 
accurate time stepping via a two-stage Runge-Kutta method, while the job solve indicates a forward Euler time 
step. 
 

 
Figure 5. Definition of engine-object (left) and gear-object (right). 

           

 
Figure 6. Definition of the calculation-layer-object (top left) and the layer-manager-object (top right), call-

hierarchy during one simulation run (bottom). 
 
3.5 Calculation layers and layer management 
 The calculation-layer-object is a special type of layer-object that defines the logic of the simulation in 
itself. The calculation-layer-object takes the engine-object and the metadata of a physical process layer, e.g. 
surface flow layer, as input (cf. Figure 6 (top left)). Each physical process then becomes a calculation-layer-
object. During the simulation, the prepare()- and compute()-methods are delegated to the engine-object by the 
calculation-layer.  
 Finally, the layer-manager-object, shown in Figure 6 (top right), provides the functionality to add and 
remove layer-objects, which were stored in a list. The layer-manager-object further triggers the start and the 
stop of the simulation run. During the simulation, the layer-manager-object loops through all calculation-layer-
objects and triggers each of them to compute their new state. As discussed above, the calculation-layer-
objects then delegate the task to their corresponding engine-object and from there the task is delegated to the 
gear-, the solver- and finally the scheme-object which solves the conservation law at cell-level. The call-
hierarchy is illustrated in Figure 6 (bottom). 
 
3.6 Summary 
 We briefly presented the layer-based OOP design of hms as an example how different physical 
processes can be coupled such that the adding and removing of processes at runtime is easy and 
implementing new processes can be done with reasonable effort. The layer-manager starts the simulation, 
observes it and then stops it when the time horizon of the simulation is exceeded. The engine-object is 
responsible for the time loop and the solver-object is responsible for the spatial loop. The scheme-object 
defines, how and which conservation law is solved. The most fundamental object herein is the layer-object, 
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which combines the state variables with the numerical methods. The most commonly used design pattern is 
the strategy-pattern. We note that in order to simplify the object creation, hms uses a factory-pattern, i.e. a 
much simpler interface (the factory) is presented to the user and the complex objects are created in the 
background. The simulation is further monitored by so-called monitor-objects, that write out model results. 
This is known as the observer-pattern (Gamma et al., 1995). An in-depth discussion on the software design of 
hms is found in Busse (2015). 
 
4 COMPUTATIONAL EXAMPLES 
 The numerical schemes implemented in hms have been extensively verified in Simons et al. (2014). In 
the following, two computational examples of shallow water flow coupled with another physical process are 
presented. The first example considers the transport of a contaminant that does not influence the flow and 
hence, the coupling is only in one direction. The second example, which deals with sediment transport and 
morphodynamics, is more complex because the transported sediment concentration appears in the 
momentum balance as a source term. Furthermore, the bed elevation changes in dependency of the 
transported sediment. The change in bed elevation then influences the whole flow dynamics. Hence, the 
processes are coupled in both directions.  
 
4.1 Contamination transport in an idealized section of Panke river, Berlin, Germany 
 Panke river has its source in Brandenburg, Germany, and flows over the Barnim plateau, through the 
northern urbanized part of Berlin into the Spandauer channel in Berlin, Germany. It is classified as a heavily 
modified water body, as its bed has been straightened, artificial embankments have been constructed and the 
river is incorporated into the wastewater system of the region (Lange et al., 2015). In 2015, a previously 
undetected contaminant (traces of the medication gabapentin) was discovered in the water work at Lake 
Tegel coming from the wastewater treatment plant Schönerlinde, which currently cannot filter gabapentin out 
of the water sufficiently. As a consequence, the treatment plant is forced to discharge its treated water in a 
tributary of the Panke river instead of Lake Tegel, as the lake is a source for drinking water (Senatsverwaltung 
für Stadtentwicklung und Umwelt, 2015). The location where the tributary joins the Panke river is shown in 
Figure 7 (left). 
 

 
Figure 7. Location of Panke river (blue arrows) and the tributary (red arrow) in Berlin, Germany, 

©OpenStreetMap-contributors (left), idealized section of the river with definition of boundary conditions (right). 
 
 In this example, we study the influence of the increased discharge in the tributary on the flow conditions 
in Panke river and the spreading of the contaminant that is released from the wastewater treatment plant. 
Since these results were obtained from preliminary studies, the geometry of Panke river as well as its tributary 
were idealized (Amann, 2016). The contaminant was treated as a passive scalar. The real world mean flow 
discharge in the Panke river was about 0.777 m3/s and in the tributary about 0.06 m3/s. As the wastewater 
treatment plant discharges into the tributary, the discharge will increase. Thus, we use an estimated discharge 
of 1.0 m3/s in the tributary as an inflow boundary condition at the tributary. The inflow boundary of the Panke 
river used the real world mean flow discharge. Boundary conditions were sketched in Figure 7 (right). The 
contaminant was injected with a concentration of 1.0 over the boundary of the tributary.  
 The advantage of the OOP approach can be seen here, because from the model user point of view, we 
simply create and add a surface-layer- and a tracer-layer-object to the layer-manager-object. The coupling of 
both processes was then carried out as discussed above.  
 The simulation was run until steady state was reached. The steady state flow velocities were plotted in 
Figure 8. The tributary leads to an average flow velocity of 0.25 m/s at the upstream of the intersection and an 
average velocity of 0.53 m/s at the downstream. As seen in Figure 8, the magnitude of flow velocity also 
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varies spatially. The maximum velocities were observed at the outlet of the tributary, and in general, the 
velocities in the middle of the river are higher than the velocities at the boundaries.  
 For a case where both inflow boundaries were set to the real world mean discharges (status quo), the 
velocity at the upstream of the intersection was 0.38 m/s, and we observed that the increased discharge in the 
tributary yields a decrease in the flow velocity at the upstream. The downstream velocities of the status quo 
case were about 0.4 m/s, and here we observed a significant increase due to the increased discharge in the 
tributary.  
 

 
Figure 8. Model results for the steady state flow field at the intersection of tributary and Panke river with 

increased discharge. 
 
 It is expected that the flow field has significant influence on the contaminant spreading. Figure 9 shows 
snapshots at different time steps of the simulation. It is observed that the contaminant is transported 
downstream without contaminating the water at the upstream of the intersection. Furthermore, the boundary at 
the opposite side of the intersection shows less contamination than the boundary at the side of the 
intersection. This is of course determined by the flow field. Turbulent diffusion leads to a spreading 
perpendicular to the flow direction and thus it is observed that the contaminant spreads more towards the 
opposite boundary as the distance to the intersection increases. 
 
4.2 Dam-break flow over mobile bed 
 This academic test case was initially presented and discussed in Cao et al. (2004). Later, it was 
replicated in Simpson and Castelltort (2006) and Zhao et al. (2016). The governing equations solved in this 
test case are presented in Simpson and Castelltort (2006). In addition to shallow water flow, the transport of 
sediment concentration was solved and erosion and deposition rates were calculated that determined the 
evolution of the bed morphology. In addition, the erosion and deposition rates act as a momentum sink or 
source term and thus influence the shallow water flow. The domain was 50000 m long with the dam located at 
25000 m. At the left-hand side, an initial water level of 40 m, at the right-hand side an initial water level of 2 m 
is defined. The initial bed elevation was constant at zero datum. The sediment diameter was chosen as 8 mm. 
All model parameters were identical with those in Cao et al. (2004). 
 Again, we emphasize that the OOP approach significantly simplifies the simulation of coupled processes. 
From the developer point of view, the physics of morphodynamics are encapsulated in the corresponding 
layer and no rewriting of existing code is required. From the model user point of view, we simply add the 
morphodynamics layer-object to the layer-manager. 
 Model results were compared with the results by Simpson and Castelltort (2006) in Figure 10 after 60 s. It 
is seen that a large erosion of the bed occurs at the location of the dam, and that the erosion is less at the 
downstream of the dam. A hydraulic jump, which manifests itself in depth-averaged models as a sudden 
discontinuity in water elevation, is observed near the location of the dam. All of these observations are in 
agreement with Simpson and Castelltort (2006). The model shows good agreement with the reference 
solution as both water elevation and bottom elevation were replicated with an L1-error of 0.38 m and 0.09 m, 
respectively. We note that the reference solution was extracted from the figures in Simpson and Castelltort 
(2006) and therefore can only be viewed as an approximation to the real reference solution. However, given 
the good agreement with hms, we are confident that the error margin of this approximation is sufficiently small 
for comparison purposes.  
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Figure 9. Model results for tracer concentration at different time steps. 

 

 
Figure 10. Model results for dam-break flow over mobile bed compared with reference solution by Simpson 

and Castelltort (2006). 
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5 CONCLUSIONS 
 Object-oriented design patterns that enable a comfortable way to simulate coupled physical processes 
were suggested and applied to shallow water flow and related processes within the framework 
Hydroinformatics Modeling System. It is concluded that while OOP slightly increases the computational 
overhead and the complexity of the code, applying the OOP concepts results in the code that allows easy 
implementation and coupling of different physical processes. Compared to procedural programming, OOP 
enhances the reusability and flexibility of the code significantly. 
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ABSTRACT  
 
The objective of the present study is to numerically simulate the cavitating flow behavior on stepped bed 
similar to a stepped spillway using a finite volume, two-phase solver available in the framework of the 
OpenFOAM (Open Field Operation and Manipulation) software package. These simulations were performed 
using the realizable k-ε turbulence model and volume of fluid (VOF) technique. A transport equation model for 
the local volume fraction of vapor was solved, and a finite rate mass transfer model was used for simulation of 
the vaporization and condensation processes. The mass transfer model of Kunz was used, and its validation 
was performed through comparisons between numerical simulations and the available experimental data 
conducted in a cavitation tunnel. The cloud of cavitation predicted by the numerical model agreed with the 
experimental results. The results also revealed that larger step heights are more prone to cavitation than 
smaller steps. The numerical model similar to experimental results showed that cavitation potential increased 
by increasing the steps angle corresponding to horizontal direction. According to the numerical results, the 
step tips are the main location of cavitation formation. It was also shown that proceeding downstream of the 
cavitation tunnel, as the average pressure in flow section decreases, the cavitation potential and thickness of 
the formed cavitation cloud increases. 
 
Keywords: Numerical model; stepped bed; cavitation potential; openfoam; mass transfer model.  
 
 
1 INTRODUCTION  

As a fundamental property of liquid, cavitation appears when the local pressure in liquid falls below the 
saturated vapor pressure (Chen et al., 2015). A liquid is said to cavitate when vapor bubbles form and grow as 
a consequence of pressure reduction. When the phase transition results from hydrodynamic pressure 
changes, a two-phase flow composed of a liquid and its vapor is called a "cavitating flow" (Eisenberg, 1967).  

Cavitation damage may occur if projections or depressions such as chamfers into the flow and other 
irregularities during construction of flood release structures exist on the chute surface. A serious problem is 
cavitation damage. Hydraulic practice has demonstrated that severe cavitation damage occurred even for 
irregularities of a few millimeters (Dong et al., 2010). 

The experimental researches on cavitation have been extensively carried out so far for varieties of flows, 
most of which are around hydrofoils or propellers. Rouse and McNown (1948) carried out a series of 
experiments on the cavitating flows about axisymmetric configurations with cylindrical after-body (Chen et al., 
2015). 

A non-dimensional parameter called the cavitation number, σ is a tool of characterizing the level of 
cavitation and is defined by (Novak et al., 2010) as: 

 
 

σ ൌ
P െ P୴
1
2 ρU

ଶ
 

[1] 
 

 
where U, P, Pv and ρ are the mean reference velocity, the local reference pressure, the vapor pressure and 
the water density, respectively. 

Cavitation inception occurs when the cavitation number, σ becomes lower than a critical value σi 
(Cavitation Inception Number). The general method to study the incipient cavitation number is mainly by 
means of experiment in cavitation tunnels or in depression tanks (Zhang et al., 2011). 

Due to their significant energy dissipation, stepped spillways have gained interest and popularity among 
researchers and dam engineers (Cheng et al., 2006). There is however a long discussion on the possible 
cavitation potential over the macro roughnesses of these spillways in higher specific discharges (Frizell et al., 
2013).  
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In order to reduce cavitation damages, it is necessary to accurately predict the extent and behavior of the 

cavitating flow on the body surface. There has been considerable uncertainty in how to address cavitation on 
stepped beds which has caused conservative design practices. Flow on a stepped channel forms a highly 
intense shear layer along the line connecting successive step tips (also called the pseudo-bottom) (Frizell et 
al., 2013). Pfister et al. (2006) proposed treating each step as a singular bottom irregularity with risk of 
cavitation. To avoid cavitation, it is recommended to limit the specific discharge (Amador et al., 2009). The use 
of specific discharge as a design recommendation seems a bit misguided without knowing the actual 
conditions of when and if cavitation will form (Frizell et al., 2013). A negative pressure approach was adopted 
by Gomes (2006), on the basis of which an incipient cavitation number was estimated. Critical unit discharges 
and mean velocities were also proposed for typical stepped spillway geometries (Gomes, 2006; Gomes et al., 
2007).  

Frizell et al. (2013) conducted laboratory experiments in a specialized facility to study the formation of 
cavitation and they have concluded that cavitation can form on stepped bed geometries that are 
representative of typical stepped spillways currently in service. 

In the last few decades, several CFD (Computational Fluid Dynamics) methods were developed to 
numerically investigate cavitating flow phenomena. Accurate prediction of the flow condition, where sharp 
interfaces might occur between the different phases, represents a numerical problem of considerable difficulty 
(Owis et al., 2003). In the CFD framework for cavitation simulation, different kinds of two-phase flow 
approaches have been developed. In the past two decades, the model in which the cavitating flow field is 
treated as filled with a homogeneous mixture composed of the liquid and vapor phases, and the flow is 
governed by only one set of equation, has been widely used (Chen et al., 2015). Different methods were 
proposed to evaluate the variable density field (Esmaili et al., 2015). Two common methods imply either a 
barotropic law (Coutier-Delgosha et al., 2003; Barre et al., 2009) or a transport equation model for void ratio 
with the source terms simulating the mass transfer due to cavitation (Merkle et al., 1998; Kunz et al., 2000; 
Singhal et al., 2002; Senocak et al., 2002). 

The objective of the present work is to numerically simulate the cavitating flow behavior on stepped bed 
similar to a stepped spillway with different slopes and steps’ heights and study the possibility of simulating 
cavitation potential on such geometries. The mass transfer model of Kunz et al. (2000) was used and the 
realizable k-ε turbulence model along with volume of fluid (VOF) technique was utilized. These simulations 
were performed using a finite volume, two phase solver available in the framework of the OpenFOAM (Open 
Field Operation and Manipulation) software package (OpenFOAM, 2013). 

 
2    GOVERNING EQUATIONS 

Due to the phase changes from liquid to vapor, a multiphase flow model has to be employed to describe 
the flow. Usually the two-phase mixture governing equation is employed to describe the multiphase flow for 
cavitation (Shang, 2013). 

 
 ∂ρ
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where ui and p are the velocity and pressure, respectively. The mixture density ρ and viscosity μ are defined 
by: 

 
 ρ ൌ α୴ρ୴ ൅ α୪ρ୪ [4] 

 
 μ ൌ α୴μ୴ ൅ α୪μ୪ [5] 

 
 

in which αv+ αl= 1, ρv and μv are vapor density and viscosity, ρl and μl are liquid density and viscosity, αv and αl 
are the local vapor and liquid volume fraction, respectively. The local liquid volume fraction αl is governed by: 

 
 ∂α୪

∂t
൅
∂ሺα୪u୧ሻ

∂x୧
ൌ െ

mሶ
ρ୪

 
[6] 
 

 
where ṁ is the mass transfer rate between the phases (Shang, 2013). 

In the above set of equations, some important terms such as Reynolds stress, τtij, the surface tension, fσ 
and the mass transfer rate, ṁ need to be modeled. 
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The Reynolds stress can be modeled through Boussinesq hypothesis by the following equation: 
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൰ δ୧୨ 
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where δij is Kronecker delta and μt is the turbulent viscosity. 

If the turbulent viscosity is calculated, the Reynolds stress will be determined and the system of 
equations will be closed. In the present work, realizable k-ɛ model was chosen as the turbulence model for 
calculating turbulent viscosity. 

The interface between the liquid and vapor phases is captured by volume of fluid (VOF) method (Hirt et 
al., 1981). The VOF equation can be developed from Eq. [7] and described as the following (Shang, 2015): 

 
 ∂α୴

∂t
൅
∂ሺα୴u୧ሻ

∂x୧
൅
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[8] 
 

 
where ur is the relative velocity at the interface between vapor and liquid, which can be described as: 

 
 

u୰ ൌ minሺC஑|u୧|, max|u୧|ሻ
∂α୴/ ∂x୧
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[9] 
 

 
where cα is the compression coefficient for the interface. The VOF equation can be solved by the implicit 
multidimensional universal limiter with explicit solution (MULES) algorithm (Rusche, 2002; Gomaa et al., 
2011). 

Since it is necessary to calculate the interface between water and vapor using VOF, the surface tension 
should be calculated in Eq. [3] using the following formula: 
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where σ is surface tension (Shang, 2013). 

The mass transfer model of Kunz et al. (2000) was employed in the present work. This model is based on 
the work of Merkle et al. (1998) and is currently one of the mass transfer models implemented in the 
OpenFOAM CFD Open Source Library. In this model, the mass transfer is based on two different strategies 
for creation and destruction of liquid. The transformation of liquid to vapor was evaluated as being proportional 
to the amount by which the pressure is below the vapor pressure. The transformation of vapor to liquid, 
otherwise, is based on a third order polynomial function of volume fraction, α. The specific mass transfer rate 
is defined as ṁ=ṁ++ṁ- (Kunz et al., 2000): 
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In the above equations, U∞ is the reference velocity, t∞=L/U∞ is the mean flow time scale, where L is the 

characteristic length scale. Cc and Cv are the two empirical coefficients. 
 

3    VERIFICATION OF NUMERICAL MODEL 
 In the first step, the experiments of Rouse and McNown (1948) were chosen to verify the cavitation 
model. The experiments were conducted in a cavitation tunnel with a cylindrical test object of length l=0.24 m 
and diameter D=0.024 m, such that l/D=10. The flow attacks at the hemispherical head shape with zero angle 
under a constant Reynolds number of 2.67×105 (Figure 1). The numerical simulations were carried out with 
the same conditions as the experiments, and with the cavitation numbers of 0.3 and 0.5. Only one half of the 
flow domain was simulated using symmetry conditions to reduce the computation time. The flow enters the 
domain with a velocity of 10 (m/s), and exits at the outlet boundary under a fully-developed condition, where a 
fixed pressure condition was set.  A 60,960-cellgrid was used for the 2D axisymmetric simulations. 
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Figure 1. Outline of the test section. 

 
 The resulting pressure coefficient (Cp) distribution along the cylinder surface defined by Eq. [13] was 
compared to the measured data by Rouse and McNown (1948) in Figure 2. In this figure, “s” is the distance 
between a surface point and the edge of the cylinder head along the body surface and D is the cylinder 
diameter. It is found that the numerical results basically agree with the experiment under various cavitation 
conditions. 
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where Ploc is the local static pressure. 

 

 
Figure 2. Comparison of the pressure coefficient distributions along the cylinder surface for cavitation 

numbers of 0.3 & 0.5 with Rouse and McNown’s experimental data (Rouse and McNown, 1948). 
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 In addition, shapes of cavity agree well with the experimental data, as shown in Figure 3.  
 

 
Figure 3. Comparison of the created cloud cavitation shapes along the cylinder surface for cavitation numbers 

of 0.3 and 0.5 with Rouse and McNown’s experimental data (Rouse and McNown, 1948). 
 
4 CAVITATING FLOW ON STEPPED BEDS 

After validation, the numerical model was used to simulate the cavitating flow on stepped beds. 
Cavitation potential of 4 types of stepped beds was studied experimentally by Frizell et al. (2013). 
Experiments were conducted in a specialized low-ambient pressure chamber (LAPC) at the laboratory of the 
Bureau of Reclamation in Denver, Colorado. A rectangular closed-conduit with machined anodized aluminum 
steps on the invert and smooth acrylic sidewalls and lid was placed within the chamber, with water entering 
the conduit from a pressure tank with flow straightening vanes and exiting submerged into a small free-surface 
reservoir, allowing the chamber pressure to act on the fluid. The conduit dimensions are 148 mm high 
(pseudo-bottom to lid), 203.2 mm wide and 2.21 m long (Frizell et al., 2013). The conduit orientation is 
horizontal, with the angle of the step treads above the horizontal direction (θ) representing the spillway slope. 
Two different step heights (h) of 50.8 mm and 25.4 mm (by adding small rectangular blocks at each larger 
step) with two different slopes (θ) of 21.8° and 68.2° were tested (Figure 4). The flow enters the domain with a 
uniform velocity, V0, and exits at the outlet boundary under a fixed pressure condition. 

 

 
Figure 4. Sketch showing main geometric components of the domain used in present study. 

 
Frizell et al. (2013) reported that the cavities form just above the step tips along the pseudo-bottom. They 

have found that at a given slope, larger step heights are slightly more prone to cavitation than smaller steps. 
Also, they have concluded that the steeper slope of steps has a greater cavitation potential (Frizell et al., 
2013). 

Figure 5 shows the fields of vapor volume fraction, for all four simulated stepped beds in the present 
study. As can be seen, the step tips, along the pseudo-bottom are the main locations of cavitation formation 
which is also reported by Frizell et al. (2013). It was also shown that proceeding downstream along the steps, 
as the average pressure in flow section decreases the cavitation potential of the formed cavitation cloud 
increases where this results also conforms to Frizell et al. (2009) observations. 
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The formed cavitation cloud from present study along with the single-frame images presented by Frizell 

et al. (2013), at the last step are shown in Figure 6. It can be seen that the patterns of the cavitation clouds 
predicted by the numerical model agrees with the experimental results. 

 

 
Figure 5. Numerical results for the created cloud cavitation on the stepped beds;  

(a) θ=21.8° & h=25.4 mm, (b) θ=21.8° & h=50.8 mm, (c) θ=68.2° & h=25.4 mm and (d) θ=68.2° & h=50.8 mm. 
 

 
Figure 6. Comparison of the created cloud cavitation for present study (at the top) with Frizell et al. (2013) 

experimental results (at the bottom) for each of four test conditions at the last step: 
 (a) & (e): θ=21.8° & h=25.4 mm, (b) & (f): θ=21.8° & h=50.8 mm,  

(c) & (g): θ=68.2° & h=25.4 mm and (d) & (h): θ=68.2° & h=50.8 mm. 
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To know the effects of step height and spillway slope on cavitation potential, additional numerical 

simulations were carried out for estimation of the cavitation inception condition in four types of tested stepped 
beds (σi). To find the inception condition, by keeping the outlet pressure constant, the inlet velocity increased 
from a low value until vapor began to form.  

Table 1 shows the computed incipient cavitation numbers (σi Num.). As can be seen from the table, results 
of the numerical model are of the same trend as the experimental data obtained by Frizell et al. (2013). It can 
be seen that similar to experimental results, increasing the step height (h) resulted in increasing σi and 
therefore increasing the cavitation potential. Also, by increasing the steps’ slope (θ), σi increased.  

 
Table 1. Cavitation inception numbers on the stepped beds. 

Type θ (deg) h (mm) σi Num.

a 21.8 25.4 0.24 

b 21.8 50.8 0.30 

c 68.2 25.4 0.48 

d 68.2 50.8 0.59 

 
5    CONCLUSIONS 

The cavitating flow on 4 types of stepped beds similar to stepped spillways, with two different step 
heights and slopes, have been studied numerically. A transport equation model for the local volume fraction of 
vapor was solved and the finite rate mass transfer model of Kunz et al. (2000) was used for simulation of the 
vaporization and condensation processes. These simulations were performed using a finite volume, two 
phase solver available in the framework of the OpenFOAM (Open Field Operation and Manipulation) software 
package. The numerical model was validated with experimental data of pressure distribution and shape of 
cavitation cloud along a cylinder tested in cavitation tunnel. The comparisons show that the numerical results 
are in good agreements with the corresponding data. 

The cloud of cavitation over 4 types of stepped beds predicted by the numerical model agreed with the 
experimental results. Effects of step height and slope on the cavitation potential of the stepped bed were also 
analyzed by computing cavitation inception number. It was concluded that the numerical model’s results show 
the same trend as was reported in experiments. According to the numerical results, stepped beds with larger 
step heights are more prone to cavitation than smaller steps. It was also concluded that cavitation potential 
increased by increasing the slope of stepped bed. According to the numerical results, the step tips are the 
main location of cavitation formation. Based on the present work, the numerical model is a strong tool for 
studying cavitation potential in high speed flows. 
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ABSTRACT 
 
A tidal bore may form during spring tide conditions when the tidal range exceeds 4 to 6 m in a natural estuary 
with a funnel shaped river mouth and shallow initial water level. The propagation of tidal bores is a highly 
unsteady turbulent process associated with intensive sediment scouring and mixing. To date, few physical and 
numerical studies documented the unsteady turbulent process of tidal bore propagation. Recent numerical 
CFD models lacked careful experimental validations. The present study aims to provide new results on CFD 
numerical modelling of tidal bore propagation with a wide range of Froude numbers (1.2 to 2.1) and 
systematic experimental validations. The model solved the incompressible Navier-Stokes equations in its two-
phase flow forms using Large Eddy Simulation (LES). Both 2D and 3D simulations were conducted; the inlet 
turbulence of the 3D models was simulated by a Synthetic Eddy Method (SEM). The physical experiments 
were based upon an ensemble-average technique, with measurements of water depth and velocity repeated 
25 times for each flow condition. The 2D CFD simulations showed good agreement in terms of free-surface 
elevations with experimental results, for the range of tested Froude numbers. Mesh grid refinement only 
improved the accuracy for some but not all flow conditions. The 2D velocity data showed qualitative and 
quantitative agreement, but only at a selective range of vertical elevation beneath the free-surface, where the 
inlet velocity were correctly reproduced. The 3D simulation highlighted a numerical boundary layer, the 
thickness of which agreed with the experimental results. The time-averaged velocity and velocity RMS of the 
numerical model data showed a closer agreement with the physical model outside the boundary layer. The 
development of the numerical boundary layer was clearly observed in the CFD model results. 
 
Keywords: Tidal bores; CFD modelling; large eddy simulation LES; physical model validation; turbulence. 
 
 
1 INTRODUCTION 
  The propagation of tidal bores is a highly unsteady turbulent process, associated with intensive sediment 
scouring and mixing. The occurrence of a tidal bore is marked by a steep rise in free-surface propagating 
upstream. A tidal bore could form during spring tide conditions when the tidal range exceeds 4 to 6 m in a 
natural system with a funnel shaped river mouth and shallow initial water level (Chanson, 2011) (Figure 1). 
The strength of a tidal bore is characterised by its Froude number, defined as: 
 
 





1
1

1

1

U V
Fr

A
g

B

 [1] 
 

 
where U is the bore celerity positive upstream, V1 is the streamwise velocity of the initially steady flow posirive 
downstream, g is the gravitational acceleration: g = 9.8 m/s2, A1 and B1 are the cross-sectional area and width 
respectively for the initially steady flow. When the Froude number is less than unity, a bore cannot form. When 
the Froude number is between 1 and 1.2-1.3, the bore is undular (Treske, 1994; Koch and Chanson, 2008; 
Leng and Chanson, 2016a). When the Froude number exceeds 1.3-1.5, the bore is breaking, and its strength 
increases with increasing Froude number (Hornung et al., 1995; Koch and Chanson, 2009; Chanson, 2010; 
Leng and Chanson, 2016a).  
 To date, limited physical studies studied the unsteady turbulent propagations of tidal bores (Hornung et 
al., 1995; Koch and Chanson, 2009; Chanson, 2010; 2011; Docherty and Chanson, 2012; Khezri and 
Chanson, 2012b; Leng and Chanson, 2015a; 2015b; 2016a; 2017). Recent numerical studies were performed 
using Computational Fluid Dynamics (CFD) models (Furuyama and Chanson, 2010; Lubin et al., 2010a, 
2010b; Reichstetter, 2011; Simon et al., 2011; Chanson et al., 2012; Khezri, 2014; Simon, 2014), albeit over a 
limited range of Froude numbers and most studies lacked careful experimental validations. The present work 
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presents new results on a numerical CFD model of the unsteady turbulent propagations of tidal bores in open 
channel flows, with a wide range of Froude numbers (from 1.2 to 2.1). Both two-dimensional and three-
dimensional CFD models were simulated. The modelling results were validated against physical experiments 
conducted systematically for the exact flow conditions used in the CFD models. The experiments were 
performed in a 19 m long and 0.7 m wide rectangular prismatic channel. Ensemble-averaged flow 
measurements were performed, where experiments were repeated 25 times for each controlled flow 
conditions and the results were ensemble-averaged. The free-surface variations were measured by a series of 
acoustic displacement meters (ADMs) along the channel centerline, and the velocity characteristics were 
measured using a NortekTM Vectrino+ acoustic Doppler velocimeter (ADV). All instruments were sampled at 
200 Hz and synchronized within ±0.01 s. 
 

 
(a) Breaking tidal bore of Qiantang River (Laoyanchang, China), photograph taken on 23 September 2016. 

 

 
(b) Undular tidal bore of Dordogne River (St. Pardon, France), photograph taken on 2 September 2015. 

Figure 1. Photographs of tidal bores in rivers. 
 
2 NUMERICAL METHOD AND CFD MODEL CONFIGURATION 
 
2.1 Numerical method and implementation 
  The numerical modelling was conducted using the CFD code Thétis developed by the I2M laboratory, 
University of Bordeaux, France. The model solves the Navier-Stokes equations in its incompressible two-
phase flow form between non-miscible fluids. In this case, the two fluids were air and water, respectively. A 
phase function C, called the color function, is used to locate the different fluids with C = 0 in the air, C = 1 in 
water, with C = 0.5, the value assumed to characterise the interface location. The governing equations are 
presented below, which is the Large Eddy Simulation (LES) of an incompressible fluid flow classically derived 
by applying a convolution filter to the unsteady Navier-Stokes equations: 
 
  
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u 0  [2] 
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and, 
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where 


u is the velocity, C is the phase function, t is the time, p is the pressure, 


g is the gravity vector, ρ is the 

density, μ is the dynamic viscosity and μt is the turbulent viscosity. The turbulent viscosity, μt is calculated with 
the Mixed Scale model (Sagaut, 2006), which was found to be accurate for coastal applications (Helluy et al., 
2005; Lubin et al., 2006). The magnitude of the physical characteristics of the fluids was calculated based 
upon the phase function as: 
 
     1 0ρ C ρ (1 C) ρ  [5] 

 
     1 0μ C μ (1 C) μ  [6] 

 
 
 The densities ρ0, ρ1 and dynamic viscosities μ0, μ1 are the respective properties of fluids 0 and 1: in this 
case, air and water, respectively. The velocity and pressure coupling is solved with a pressure correction 
method (Goda, 1979). 
 The space derivatives of the inertial term are discretised by a hybrid upwind-centered scheme and the 
viscous terms is approximated by a second-order centered scheme (Lubin et al., 2006). The interface tracking 
was done using a Volume of Fluid (VOF) method with a piecewise linear interface calculation (PLIC). This 
method has the advantage of building a sharp interface between air and water. The time discretization is 
implicit and the equations are discretised on a staggered grid thanks to a finite volume method. The MPI 
library HYPRE was used to solve the linear system of the prediction and correction steps (Falgout et al., 
2006). The time steps were dynamically calculated to insure a CFL condition inferior to 0.2. The numerical 
model has been proved accurate through a variety of coastal applications and numerous test cases (Lubin, 
2004; Lubin et al., 2006). Earlier CFD studies of tidal bores by Simon et al. (2011) and Khezri (2014) were 
also based upon this model.  
 
2.2 Numerical model configuration 
 Both 2D and 3D CFD simulations were conducted in the present study. For 2D CFD simulations, 
breaking bores of Fr1 = 1.5 and 2.1, and undular bores of Fr1 = 1.2 were modelled numerically. The numerical 
domain was 12 m in the longitudinal (stream-wise) direction and 1 m in the vertical direction (Figure 2). A no-
slip condition was imposed at the lower boundary (z = 0 m) and a Neumann condition was used at the upper 
boundary (z = 1 m). At the end of domain (x = 12 m), a wall boundary was imposed to act like a closed gate to 
reproduce the experimental generation process. The opening under the gate hout could be set to introduce a 
Neumann condition between the bed (z = 0 m) and the bottom of the gate (z = hout). The initial conditions of 
the 2D models consisted of a water trapezoid, with higher depth at the inlet (din) and lower depth at the outlet 
(dout) to approximate the gradually-varied flow in the physical open channel. All initial and boundary 
parameters were taken from the experimental measurements. 
 

 
Figure 2. Definition sketch of numerical domain configurations; X is the distance from the left boundary (i.e. 

gate) of the numerical domain; x is the distance from the upstream end of the physical channel. 
 

For 3D CFD simulations, the work is still in progress. Herein, only data of the initially steady flow before 
the bore arrival will be presented. The flow conditions simulated by the 3D CFD model corresponded to the 
initially steady flow before the breaking bore of Fr1 = 2.1. The 3D model was based upon the 2D model 
configuration, extruded in the third direction being the transverse y dimension. The coordinate y was positive 
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towards the left side wall and the 3D numerical domain was 0.7 m wide. In this case, no-slip conditions were 
applied to both lateral walls and bottom of the domain. The Synthetic Eddy Method (SEM) was used in the 3D 
model to inject turbulence at the inlet of the domain (Jarrin et al., 2006; 2009). The input parameters for this 
method, including mean velocity and velocity fluctuations, were all extracted from the experimental data of 
Leng and Chanson (2016a). The number of eddies was set at 2000 and the size of eddies was 0.010 m, 
which was an order of magnitude higher than the experimental data (Leng and Chanson, 2017). Jarrin et al. 
(2006; 2009) found that the method gave better results with over-estimated eddy size. Table 1 documents 
detailed configurations of the 2D and 3D numerical models. In the table, So stands for the channel slope in the 
longitudinal direction. The opening under the gate after rapid closure is denoted hout. 
 Table 2 summarises the experimental flow conditions corresponding to the three Froude number 
modelled by CFD (Fr1 = 1.2, 1.5, 2.1). The reference depth, d1 and celerity, U was taken at the velocity 
sampling location, which was located 9.6 m upstream of the gate for both physical and numerical channels. 
 

Table 1. Initial configuration of the 2D and 3D numerical simulations. 
Reference Domain (m) Mesh grid 

density 
Fr1 Q 

(m3/s) 
So din (m) dout (m) hout (m) Bore type

2D_Fr1.2 12×1 1600×100 1.2 0.101 0 0.208 0.19 0.071 Undular 

2D_FR1.5 12×1 2400×200 1.5 0.101 0 0.18 0.16 0 Breaking 

2D_FR2.1 12×1 1600×140 2.1 0.101 0.0075 0.1 0.1 0 Breaking 

3D_FR2.1 12×1×0.7 1600×250×200 2.1 0.101 0.0075 0.093 0.093 0 Breaking 

 
Table 2. Flow conditions of the experimental data used to validate the numerical model. 

Reference Fr1 Q (m3/s) So d1 (m) U (m) Bore type Instrumentation

Leng and 1.2 0.101 0 0.210 0.71 Undular ADMs and ADV 

Chanson 1.5 0.101 0 0.180 1.13 Breaking ADMs and ADV 

(2016a) 2.1 0.101 0.0075 0.100 1.00 Breaking ADMs and ADV 

 
3 2D SIMULATION OF TIDAL BORE PROPAGATION 
 
3.1 Free-surface comparisons 
 During the physical experiments, both instantaneous and ensemble-averaged measurements were 
performed to characterise the free-surface and velocity properties. Up to 10 acoustic displacement meters 
(ADMs) were installed at different longitudinal positions x (x = longitudinal distance from upstream end) on the 
channel centerline, all sampling at 200 Hz, to record the free-surface variations with time at different locations 
along the channel. During the numerical simulations, the free-surface variations with time were recorded at the 
same locations as those of the ADMs to validate the numerical results. Comparisons between numerically 
simulated free-surface evolution and experimental observations were conducted, and typical results are 
presented in Figure 3 for both undular and breaking bores. Note that the gate was located at x = 18.1 m. 
 Overall, the free-surface variations simulated by the 2D CFD model agreed well with the experimental 
data (instantaneous or ensemble-averaged) at all longitudinal locations, quantitatively and qualitatively, for all 
Froude numbers. Some deviations were observed in terms of the bore height and bore celerity. At generation 
(close to the gate), the numerical model tended to estimate relatively accurately the free-surface rise 
mechanism, with almost identical depth gradient with time. However, the bore height was underestimated for 
both breaking and undular bores at generation. As the bore propagated upstream towards mid-channel, the 
numerical model overestimated the bore celerity and bore height, resulting in differences in terms of bore 
arrival time at x = 8.5 m (Figure 3). For undular bores, the numerical model was associated with secondary 
wave periods which differed from the experimental data. The wave forms of the numerical model appeared to 
be more regular than the experimental data, due to the two-dimensional constraint and the absence of side 
wall effects. 
 
3.2 Velocity comparisons 
 Ensemble-averaged velocity measurements were performed using a NortekTM Vectrino+ acoustic 
Doppler velocimeter (ADV) located on the channel centerline at mid-channel (x = 8.5 m). The ADV was 
equipped with a three-dimensional side looking head, able to record velocity in the longitudinal, transverse 
and vertical directions. The ADV was sampled at 200 Hz, synchronised with the ADMs, and measured velocity 
at a number of vertical elevations (z/d1 = 0.1, 0.4, 0.8). During the numerical CFD modelling, velocity data at 
the same dimensionless vertical elevations was recorded at x = 8.5 m for validation purposes. Figure 4 
presents typical comparisons between numerical and experimental results for bores with Fr1 = 1.2 and 1.5. 
The time frames of the numerical and experimental data was synchronized using the numerical time line. 
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(a) Undular bore (Fr1 = 1.2)                                                (b) Breaking bore (Fr1 = 1.5) 

Figure 3. Dimensionless free-surface time evolution for undular and breaking bores of Fr1 = 1.2 and 1.5, 
respectively; Comparisons between numerical simulation (2D_Fr), instantaneous experimental data 

(ExpInstan) and ensemble-averaged experimental data (ExpEA). 
 

Overall, the time-variations of the numerically-simulated velocity data agreed well with the experimental 
data at all vertical elevations and for all velocity components. The longitudinal velocity was associated with a 
sharp deceleration following the arrival of breaking bores. The vertical velocity showed a sharp acceleration, 
then deceleration, following the breaking bore arrival. One feature which was absent from the numerical data 
set was the presence of a boundary layer in the initially steady flow as shown in the experimental results. 
Although a no-slip condition was imposed at the bottom boundary of the model, resulting in slightly lower 
steady flow velocity for lower vertical elevations (Figure 4), no obvious boundary layer such as highlighted in 
the experimental data was observed. This would be further addressed in the 3D simulation documented in 
Section 4. 

 Despite the absence of boundary layer, the present numerical data highlighted some longitudinal 
recirculation at the lowest vertical elevation during the propagation of breaking bores with complete gate 
closure (Figure 4b). Field and experimental studies have documented the presence of longitudinal 
recirculation next to the bed (often 0 < z/d1 < 0.3-0.5) beneath the bore front of both the breaking and undular 
bores (Wolanski et al., 2004; Chanson and Toi, 2015; Leng and Chanson, 2016a). This is characterised by a 
negative longitudinal velocity at the end of the deceleration following the bore passage, highlighted by the 
experimental data of breaking bores at z/d1 = 0.1 in Figure 4b. At the same dimensionless vertical elevation 
next to the bed, the numerical data showed qualitatively some longitudinal recirculation velocity, however, with 
a time delay and lesser strength (red solid curve in Figure 4b). 
 

 
(a) Undular bore (Fr1 = 1.2)                                                (b) Breaking bore (Fr1 = 1.5) 

Figure 4. Dimensionless time-variations of longitudinal velocity for undular and breaking bores of Fr1 = 1.2 
and 1.5, respectively; Comparisons between numerical simulation (2D_Fr) and ensemble-averaged 

experimental data (ExpEA). 
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 The undular bore was characterised by a gentle free-surface rise, followed by a series of well-formed 
secondary waves. Meanwhile, the longitudinal velocity decreased in a smooth manner with the rise of free-
surface, and oscillated quasi-periodically with the free-surface by a phase difference of π. The vertical velocity 
increased with the free-surface rise, then oscillated quasi-periodically with the free-surface by a phase 
difference of π/2. The numerical results reproduced the periodic oscillations in the free-surface, longitudinal 
and vertical velocity variations, however, with periods different from the experimental data. More specifically, 
the numerical data was associated with a shorter period. The minimum longitudinal velocity reached by the 
numerical model was higher than the experimental data, whereas the maximum longitudinal velocity of the 
secondary waves was lower than the experimental data (Figure 4). The difference was believed to be due to 
the lack of the third dimension and of sidewall friction, and hence resulting in a more energetic behavior of the 
bore. 
 
3.3 Discussion 
  The 2D numerical modelling results showed large vortical structures formed both underneath and behind 
the front of breaking bores (Figure 5). Previous 2D CFD modelling by Khezri (2014) observed large vortical 
structures formed close to the bed, with a vertical dimension Lz up to 0.1 m (Lz/d1  0-0.5) underneath 
breaking bores of Froude number 1.5. The present study highlighted two types of vortical structures, one near 
the fluctuating free-surface behind the roller, and one close to bed. The vortical structures near the upper free-
surface were observed almost immediately downstream of the breaking roller, with length scales of Lx  0.1 m 
(Lx/d1  0.56), and were advected downstream as the bore front propagated upstream. This type of vortical 
structures were formed by the plunging mechanism of the steepened bore front into the flow and was typically 
associated with pockets of air. 

 The vortical structures next to the bed were observed to be flat and elongated, with much larger length 
scales in the longitudinal direction compared to the vertical direction. The height of these vortical structures 
was approximately Lz  0.02 m (Lz/d1  0.11). Experimental studies of turbulent scales by Leng and Chanson 
(2017) highlighted presence of anisotropic vortical structures underneath the bore front. The vertical length 
scale Lz was up to 0.02 m (Lz/d1  0-0.11) for breaking bores with relatively large Froude numbers (Fr1 ≥ 1.5). 
The numerical results agreed with the experimental findings in terms of the vertical length scale of the vortical 
structures near the bed. The occurrence of vortical structures in the numerical model was found to be 
approximately 1 m downstream of the bore front, which was greatly delayed compared to experimental 
observations and past numerical results. The reason could be due to the 2D constraint, where bubble breakup 
mechanism was not allowed. Some numerical air bubbles were still observed more than 2 m (�x/d1  0-11) 
following the leading edge of the bore, while the entrained bubbles would have risen to the free-surface in a 
real physical flow (Wang et al., 2016). 

 

 
Figure 5. Vortical structures observed beneath the tidal bore. 

 
4 3D STEADY FLOW SIMULATION 

Figure 6 presents typical time series and PDFs of the longitudinal velocity components simulated at x = 
8.5 m by the 3D CFD model (3D_Fr2.1) in steady flow at two different vertical elevations z. The 3D CFD 
model was run for a physical time span of 10.609 s (dimensionless time t×(g/d1) ~ 110), and the turbulence 
arrived at the velocity sampling location approximately after 1 s (dimensionless time t×(g/d1) ~ 10). Compared 
to the 2D results in the steady flow phase (Figure 3 and 4), the present 3D results clearly highlighted some 
turbulent fluctuations in all velocity components at all vertical elevations. Moreover, from the time series and 
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PDFs, variations in longitudinal velocity magnitudes with vertical elevations can be observed. Namely, the 
mean velocity at higher vertical elevation (z/d1 = 0.71) was larger than that at lower elevation (z/d1 = 0.07). 
This indicated the successful reproduction of a turbulent boundary layer. 
 

 
(a) Time-variations of instantaneous longitudinal velocity (b) PDF of longitudinal velocity 
Figure 6. (a) Time-variations of the instantaneous longitudinal velocity simulated at x = 8.5 m, z/d1 = 0.07 and 

0.71 by the numerical model (3D_Fr2.1); (b) the corresponding probability density functions at two vertical 
elevations. 

 
Figure 7 presents the vertical profile of the time-averaged velocity V and velocity fluctuations v’ simulated 

at x = 8.5 m. The numerical results were compared to the experimental data. The numerical results were time-
averaged over the entire 10.609 s time span. The experimental data was time-averaged over 30 s. As 
highlighted by Figure 7a, the numerical profile of the longitudinal velocity clearly showed a bottom boundary 
layer. The vertical profile of the longitudinal velocity simulated by the numerical model agreed well in shape 
and values with the experimental data, especially at the outer edge and outside of the boundary layer, except 
for the highest vertical elevation. Inside the boundary layer, the numerical data agreed better with the 
experimental data close to bed, then deviated from the experimental curve, before they coincided again near 
the outer edge. The longitudinal velocity fluctuations, highlighted by its standard deviation, agreed 
quantitatively and qualitatively with the experimental data, with better fit near the outer edge and outside of the 
boundary layer. 

 The vertical profile of the transverse and vertical velocity components simulated by the numerical model 
showed very small, near-zero magnitudes (Figure 7b). The values were orders of magnitudes smaller than the 
experimental data throughout the vertical range. The velocity fluctuations in the transverse and vertical 
directions were associated with values higher than the corresponding velocity component magnitudes, 
highlighted by the numerical data. Furthermore, the numerical data showed increase in velocity fluctuations 
with increasing vertical elevations, which agreed in terms of trend with the experimental data. Nevertheless, 
the experimental fluctuations were orders of magnitudes higher than the numerical ones, especially in the 
vertical direction. This could be attributed to the arrangement of the ADV head, which was known to over-
estimate the vertical velocity fluctuations because of beam reflections and echo effects on the bed. 

 From the time series, turbulence was observed to arrive at the velocity sampling point after approximately 
1 s and was fully developed after 5 s. The evolution of the numerical boundary layer was thus studied by time-
averaging the longitudinal velocity at different vertical elevations over different time spans, from the entire time 
span of 10.609 s down to every 2 s. The results are presented in Figure 8, with comparison to experimental 
data. Overall, all numerical profiles were associated with the presence of boundary layers. The point at the 
highest vertical elevations (z/d1 = 0.90) was associated with outlying values at all time. This was previous 
observed by Simon (2014) using the same numerical tool. For all time spans, the numerical data showed 
better agreement near the bottom and close to the outer edge of the boundary layer. Throughout the vertical 
range, the accuracy of the data seemed to be unaffected by the time span over which the numerical data was 
averaged, as long as the turbulence has reached the velocity sampling location. The findings seemed to 
suggest that, once the flow became turbulent and the boundary layer started to develop in the numerical 
model, the steady flow data would not evolve with longer time of simulation. The finding indicated good quality 
of numerically simulated turbulence, and highlighted the importance of using the actual experimental data for 
the numerical inlet boundary. 
 

t(g/d1)

V
x/

V
m

ax

0 20 40 60 80 100
0

0.15

0.3

0.45

0.6

0.75

0.9

1.05

z/d1 = 0.07
z/d1 = 0.71

PDF

V
x/

V
m

ax

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.15

0.3

0.45

0.6

0.75

0.9

1.05

z/d1 = 0.07
z/d1 = 0.71

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

5078 ©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print)



  
          

  

 

  
(a) Longitudinal velocity                                                  (b) Transverse and vertical velocity 

Figure 7. Vertical time-averaged velocity profile of the steady flow longitudinal (a), transverse and vertical (b) 
velocity components at x = 8.5 m; Comparison between numerical (3D_Fr2.1) and experimental results (Exp). 

 

 
Figure 8. Vertical profile of time-averaged longitudinal velocity at x = 8.5 m, simulated by the numerical model 

and averaged over different time span (3D_Fr2.1). 
 
5 CONCLUSIONS 
 The propagation of tidal bores in open channels was investigated numerically using 2D and 3D CFD 
model with Large Eddy Simulations. The numerical modelling investigated tidal bores with Froude numbers 
ranging from 1.2 to 2.1. The results of the numerical studies were compared and validated against 
experimental data collected under the same flow conditions. Overall, the 2D numerical results gave good 
approximation of the free-surface elevation associated with the bore propagation for the range of Froude 
numbers. The modelled velocity data agreed well with the experimental data outside the boundary layer, and 
highlighted some longitudinal recirculation underneath breaking bores, although with a delayed occurrence. 
The numerical model tended to over-estimate the bore celerity and under-estimate the bore height for both 
breaking and undular bores. Streamline tracing of the numerical results highlighted elongated thin vortical 
structures behind the bore front and close to bed, with vertical length scale comparable to experimental 
findings. The 3D steady flow results highlighted a developing boundary layer in the initially steady flow before 
the bore generation. The thickness of the boundary layer was comparable to experimental results, and the 
numerical and experimental velocity profiles agreed closely next to the bottom and near the outer edge of the 
boundary layer. The development of the numerical boundary layer over time was examined. Results 
suggested that after the turbulence has reached the velocity sampling location, the numerical boundary layer 
changed very little with longer simulation time. 
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ABSTRACT  
 
This paper describes a computationally efficient, fast and accurate model to simulate tsunami generation, 
propagation and inundation. Tsunamis are simulated using the non-linear shallow water wave (NSWE) model 
in both the Spherical and the Cartesian coordinate system to simulate trans-oceanic wave propagation and 
inundation. The NSW equations are solved using a finite volume based shock capturing algorithm. The 
positivity preserving algorithm accurately preserves the steady “C” state of the NSWE equations. The solver is 
implemented on GPGPUs (General-Purpose computing on Graphics Processing Unit) using NVIDIA’s 
Compute Unified Device Architecture (CUDA) programming platform. The model has been successfully 
verified and validated with analytical, experimental and field cases. In this paper, the model validation is 
summarized against the benchmark cases provided by the National Tsunami Hazard Mitigation Program 
(NTHMP) of National Oceanic and Atmospheric Administration (NOAA) USA. The validation cases include 
analytical solutions, laboratory experiments and field data. 
 
Keywords: GPGPU; tsunami; high-performance computing; non-linear shallow water wave model; shock 

capturing methods. 
 
 
1 INTRODUCTION  

Tsunamis are long water waves that are primarily caused by earthquakes. They are amongst the most 
dangerous natural disasters and pose considerable risk on most of the world’s coastlines. Tsunami events 
may result in large scale ocean basin wide destruction and fatalities, and have the potential to damage local 
and global economies. The scale of the destruction and damage due to tsunamis requires efficient risk 
mapping for tsunami hazard mitigation, humanitarian efforts and reduce impact to global financial markets. 
Numerical modeling of tsunami propagation and inundation is an effective and an essential tool that can 
provide risk assessment, evacuation planning and real-time forecasting. Due to the length scales of the 
tsunami waves, numerical solutions of non-linear shallow water wave (NSWE) equations are commonly used 
to simulate tsunami generation, propagation and inundation on land.  

Numerical modeling of tsunami generation, propagation and inundation have been historically performed 
by solving the NSWE in both the spherical and the Cartesian coordinate systems for trans-oceanic as well as 
local simulations. Various approaches have been employed in solving the NSWEs including the finite 
difference method, finite volume method, finite element method and smoothed particle hydrodynamics (SPH). 
Earlier tsunami models have been based on finite difference leap frog schemes such as MOST by Titov and 
Synolakis (1995), TUNAMI by Goto et al. (1997) and COMCOT by Wang and Liu (2006).  

More recently finite volume based Godunov schemes have been implemented successfully to simulate 
tsunami propagation and inundation (Kim et al., 2007; Popinet, 2011; Leveque at al., 2011). The advantages 
of these schemes include better conservation property, shock-capturing ability including wet-dry transition and 
ease of implementation on both structured and unstructured grids. Because of these reasons, a second-order 
shock capturing finite volume model is used to solve the NSWE in this work for tsunami simulations. However, 
simulating tsunami propagation and inundation on large grids render these methods computationally 
expensive.  

Due to the advancement of computational hardware, various methods have been employed to speed up 
these simulations. Leveque et al. (2011) used adaptive block meshes to increase the speed of their finite 
volume solver. Popinet (2011) implemented their finite volume solver on a dynamically adaptive quadtree 
grids. Liang et al. (2015) demonstrated another simplified adaptive grid system to speed up their model 
simulations. While these techniques have demonstrated model acceleration by several orders (Liang et al., 
2015), they have also been subject to problems dealing with full conservation of mass and flux gradients 
during the grid adaptation.  

A more recent high performing computing capability has emerged involving the use of graphical 
processing units (GPUs). While the GPUs have been commonly used in the gaming and digital image 
processing regimes for quite some time, they are gaining popularity and show promise in their application on 
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high performance computing (Brodtkorb, 2010). The advantage stems from the availability of hundreds or 
streaming processing units on a single GPU compared with the CPU, which provide powerful parallel 
computing capability. Recently numerous GPU-accelerated models have been developed and used in many 
areas of scientific computing such as CFD, magneto-hydrodynamics, gas dynamics and planetary dynamics. 
(Wang et al., 2010; Kuo et al., 2011; Rossinelli et al., 2011; Schive et al., 2012) 

In the present work, a GPU-based NSWE solver is presented for tsunami simulations. The model solves 
the NSWE using an explicit second order TVD based shock capturing algorithm which is positivity preserving 
in nature. The model preserves the exact “C” state of the NSWE system and accurately captures the wet-dry 
interface. The model has been fully verified and validated using the series of benchmark cases designed by 
NTHMP, NOAA (Synolakis et al., 2007). Here these validations are presented. 
 
2 NUMERICAL MODEL 

The 2D hyperbolic conservation form of the NSWE in Cartesian coordinates may be written as 
 

࢛߲ 
ݐ߲

൅
ࢌ߲
ݔ߲

൅
ࢍ߲
ݕ߲

ൌ  [1] ࡿ

 
where ሺݔ,  ,is the vector of conservative variables ࢛ ,denotes time ݐ ,ሻ are the Cartesian coordinatesݕ

ሺࢌ, ݔ ሻ are the vectors containingࢍ െ and ݕ െ direction flux functions and ࡿ is a vector containing the source 
terms and diffusive fluxes. The conservative form of the NSW equations in a spherical coordinate system may 
be written as: 

 
࢛߲ 

ݐ߲
൅ ܵ௢

ࢌ߲
ݔ߲

൅
ࢍ߲
ݕ߲
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where the spherical coordinates ሺ߰, ߶ሻ representing the longitudes and the latitudes are scaled following 

Shi et al. (2012) as ݔ ൌ ௢ሺ߰߶ݏ݋ܴܿ െ ߰௢ሻ and ݕ ൌ ܴሺ߰ െ ߰௢ሻ, ܴ is earth’s radius, ܵ௢ ൌ /௢߶ݏ݋ܿ cos߶ and ࡯ࢌ is 
the vector containing additional Coriolis force terms. Without loss of generality, the conservative variables and 
the flux functions are defined below: 

 
࢛  ൌ ሾ݄, ,ݑ݄ ሿ்ݒ݄ [3a] 
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ࢉࢌ  ൌ ሾ0, െ݂݄ݒ,  ሿ் [3d]ݑ݄݂
 

where ݄ is the total water depth, ሺݑ,  ሻ are the 2-D horizontal depth-averaged velocities of the waterݒ
column, ܾሺݔ, ݃ ሻ is the topography/bathymetry above a datum andݕ ൌ 9.81	݉ଶ/ݏ is the gravitational 
acceleration. The source vector varies depending on the choice of the coordinate system used as: 

 
 

ࡿ ൌ

ۏ
ێ
ێ
ێ
ۍ 0
െ݄݃

డ௕

డ௫
െ ଶݑ√ݑ௙ܥ ൅ ଶݒ

െ݄݃
డ௕

డ௬
െ ଶݑ√ݒ௙ܥ ൅ ଶݒ

ተ
ተ

ଵ

ோ
ݒ݄ tan߶

െܵ௢݄݃
డ௕

డ௫
െ ଶݑ√ݑ௙ܥ ൅ ଶݒ

െ݄݃
డ௕

డ௬
െ ଶݑ√ݒ௙ܥ ൅ ଶݒ ے

ۑ
ۑ
ۑ
ې

  
 

[4] 
 

 
where the first column of the source vector ࡿ is used in the Cartesian coordinate system for nearfield 

inundation and the second column is used in the Spherical coordinate system for global basin wide tsunami 
propagation. ܥ௙ ൌ ݃݊ଶ/݄ଵ/ଷ is the bed roughness coefficient with ݊ as the Manning’s friction coefficient. 

The governing equations given in Eq. [1] and [2] are solved using a finite volume, Godunov-type shock 
capturing based algorithm. The algorithm is a 2nd order TVD ENO-MUSCL based scheme resulting in a 
second order accuracy in both space and time (Kurganov et al., 2000; Van Leer, 1979, Leveque, 2002; Toro, 
1999). The partial differential equations in Eqs. [1, 2] are transformed into a series of ordinary differential 
equations by integrating the equations over a finite volume. The resulting system of the ODE’s may be written 
in cell ሺ݆݅ሻ as: 
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where the source terms are split into a bed slope term ࢈ࡿ and a friction term ࡲࡿ. The subscripts 

ሺࡺ,ࢃ,ࡱ,  ሻ represent the cell edges. The left and right values of the conservative variables on either side of aࡿ
cell interface are obtained by a second-order linear reconstruction of the variable considering a MUSCL slope 
limiter (van Leer, 1979). The MUSCL reconstruction is employed to avoid spurious oscillations of the variables 
in case of discontinuities and steep gradients. The minmod limiter based on the cell-center values of the 
variables is used, which offers good numerical stability in an efficient computational step. The interface cell 
flux is constructed from the left and right values of the variables using the Lax-Friedrich flux shown for the east 
interface for illustration as: 
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Where ࡱ࢛

࢒  and ࡱ࢛
࢘  are values of the linear reconstruction of the variable ࢛ around the cell interface, ࡱࢌ

࢒  
and ࡱࢌ

࢘  are the left and right flux values and ߙ ൌ max୧୨  ௜௝ is the maximum characteristic wave speed in theߣ

computational domain, with ߣ௜௝ ൌ maxሺ|ݑ| ൅ ඥ݄݃, |ݒ| ൅ ඥ݄݃ሻ is the characteristic wave speed in cell ݆݅. A semi-
implicit formulation for the frictional term is employed which simply results in the following time-stepping 
function: 
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where ࢌࡿࢌ ൌ ሾ0, ݃݊ଶ√ݑଶ ൅ ,ଶ/݄ଶ/ଷݒ ݃݊ଶ√ݑଶ ൅  ଶ/݄ଶ/ଷሿ is the Manning’s friction term. Thus, the simplifiedݒ

form of Eqs. [1,2] can be reduced as: 
 

ା૚࢔࢛  ൌ ࢔࢛ ൅ Δtࣦሺ࢔࢛ሻ  [8] 
 

A positivity preserving reconstruction of the water depth and the velocities given by Liang (2010) is 
employed to accurately track the wet-dry moving interface, ensure non-negativity of the water depth and 
balancing the exact “C” state of the NSW equations. As a part of this reconstruction, a central differencing 
scheme is employed to discretize the bed slope terms which ensures the exact reconstruction of the still water 
surface at rest. The time integration is performed by a 2nd order TVD Runge-Kutta scheme (Gottlieb and Shu, 
1998) given as: 
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The scheme given in Eqs. [1] to [9] is a semi-implicit finite volume based shock capturing scheme which 

ensures non-negativity of the depth and accurate capturing of the wet-dry interface. The numerical 
methodology is stable as long as the time step satisfies the Courant-Friedrich-Levy (CFL) condition: 
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2
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The boundary conditions are imposed based on the nature of the boundary condition during the explicit 

time stepping algorithm. For inflow and outflow boundary conditions, a local Riemann problem is solved at the 
appropriate boundary cell by imposing the local flow conditions. For open boundaries, a zero normal flow 
boundary condition is imposed which prevents the rise of any spurious oscillations at the boundaries. Wall 
boundary conditions are imposed by negative flow velocities and zero water depth at the wall boundaries. 
Initial conditions are imposed based on the nature of the problem being solved. For tsunamis, an earthquake 
fault model specified by the geometry of the rupture area and the slip value is specified. The bottom bed 
rupture is computed from the fault parameters using the Okada solution (Okada, 1985) and is assumed to 
rupture instantaneously at ݐ ൌ 0 providing the initial condition for tsunami wave generation.  

 
3 GPGPU IMPLEMENTATION 

The finite volume based NSW solver given in Eq. [9] is implemented for high performance computing on 
GPUs using the CUDA programming framework. A GPU is made up of multiple cores which are all designed 
to perform stream processing of vector operations simultaneously. The finite volume method is an ideal solver 
to run on the GPUs since almost all the cells in the computational domain undergo the same mathematical 
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operations, making the solver computationally fast and efficient. The NSW solver is implemented in a 
massively parallel environment on the GPU’s using CUDA/C while the pre- and post-processing components 
of the software are programmed in C. The parallel component of the algorithm is identified and efficiently 
implemented as GPU kernels (NVIDIA, 2016). 

The program can be split into three distinct components. In the first pre-processing step, appropriate 
memory is allocated using the Unified memory which is accessible to both the CPU and the GPU and the 
initial bathymetry/topography data is loaded into the memory. The computational grid is split into blocks of 
16 ൈ 16 cells. The computational grid is transformed into a CUDA grid which consists of multiple 2D 
computational blocks. The overlapping blocks are designed to improve the speed of data access using the 
available shared memory on the GPUs. In the second step, the mathematical calculations of the NSW solver 
are performed wholly on the GPUs by the parallel kernels of the program. In the final step, after the required 
calculations are completed, the data is exported for post-processing and analyses of the results. Two main 
kernels are defined in the program. The first is a reduction kernel which is used to compute the maximum 
characteristic wave speed in the system.  

Then the maximum permissible time step is computed based on the characteristic speed. The second 
kernel is the actual computational kernel which uses several defined device functions to compute the Minmod 
limiters, MUSCL reconstruction, flux calculation and time stepping to obtain the solution at the new time level. 
Within each time step, the main kernel is invoked twice to account for the two-step Runge-Kutta scheme. Both 
the kernels are executed entirely on the GPUs.  

During the execution, the kernels launch a grid of thread blocks. The individual threads correspond to 
each computational cell in the domain of the system. Each block is made up of 16 ൈ 16 threads and has an 
overlap of one row on the edges. The blocks are launched asynchronously and the overlap ensures that the 
blocks can be launched in any order without depending on the data from the adjacent blocks. The threads 
within a block are launched synchronously and the data has to be coalesced to ensure that there is no “out of 
warp” data access, which can slow down the computational time. In this work, Unified global memory, with 
16 ൈ 16 overlapping thread blocks and shared memory is implemented in the program. 
 
4 VERIFICATION & VALIDATION 
 
4.1 NSW Model Verification 

The GPU-NSWE model accuracy was verified through the solutions of Thacker’s 2D planar problem in a 
parabolic basin (Thacker, 1981). The bottom of the parabolic basin is given as 
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For the planar case, the solution of the free surface and the velocity components are given as 
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with ߱ ൌ ඥ2݄݃௢/ܽ௢, ߟ௢ ൌ 0.5, ܽ௢ ൌ 1, ݄௢ ൌ 0.1 and period of oscillation, ܶ ൌ  .߱/ߨ2
 

 
    (a) ࢚ ൌ ૝ࢀ                        (b) ࢚ ൌ ૚૟ࢀ/૝                     (c) ࢚ ൌ ࢚ ૝                        (d)/ࢀૢ ൌ ૚ૢࢀ/૝ 

Figure 1. Numerical solution of Thacker’s planar solution shown at ݐ ൌ (a) 4ܶ, (b) 16ܶ/4, (c) 9ܶ/4 and (d) 
19ܶ/4. The parabolic basin is shown in grayscale in the background. The shoreline is shown by the black line. 
 

The free surface solution for Thacker’s 2D planar solution is shown in Figure 1. The simulation has been 
performed for a total time of 10ܶ. The results are shown starting at 4ܶ for every ܶ/4 s. The solutions are exact 
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after 4ܶ and compares well with the exact analytical solution. The ܴܵܯ error of the water depth compared with 
the analytical solution is measured to conform the model accuracy. The simulations are performed for various 
spatial discretization Δݔ ൌ 10ିଵ~10ି଺ and temporal discretization, Δݐ ൌ 10ିଷ~10ି଺. The ܴܵܯ error 
approximately follows a second order law ߳~ܱሺΔxଶ, Δݐଶሻ, verifying the second order accuracy of the model in 
space and time as shown in Figure 2. 

 

 
Figure 2. ܴܵܯ errors for Thacker’s planar solutions compared with the analytical solution is shown for 

different orders of spatial and temporal discretization at 5ܶ. 
 
4.2 NSW Model Validation 

Model validation is essential, especially if the model is used in the production of accurate hazard 
mitigation, public safety and risk tool products. A suite of benchmark cases for validating the tsunami models 
were established based on the OAR-PMEL-135 report (Synolakis et al., 2007). The benchmark cases were 
designed for model verification and validation to include analytical solutions, laboratory experiments and field 
measurements. The cases chosen test certain features of the model, but not all of the tsunami models. The 
list of the benchmark cases that were used for the model validation is shown in Table 1. 

 
Table 1. NTHMP benchmark test cases based on the recommendations of Synolakis et al. (2007). 

Benchmark 
Test 

Category Description 

BP1 Analytical Solution Single wave on a simple beach 
BP4 Laboratory 

Experiment 
Solitary wave on a simple beach 

BP6 Solitary wave on a conical island 
BP9 Field Measurements Okushiri Island Tsunami 

 
The NTHMP model validation is quantified by three error quantities. Normalized root mean square 

deviations error in an area of interest of span of time, relative error for maximum wave height or runup and 
relative error for multiple runup values in a specific region were recorded.  

The allowable errors for the three main categories of the benchmarking tests as recommended by OAR-
PMEL-135, suggested by Synolakis et al. (2007) are summarized below in Table 2. It is suggested to have 
error criteria set at <10% for laboratory experiments for both breaking and non-breaking waves. The 
normalized root mean square deviation (ܴܵܯ) is applied to all the observed data points withing a space 
segment or a time period. It is defined as 
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[13] 

 
where the subscript ݁ denotes the observed or expected value and ݉ denotes the modeled value. The 

model’s predictive accuracy for maximum wave amplitude or runup is quantified by the ܺܣܯ error, irrespective 
of the location in time and space. It is quantified as the relative difference between the expected and the 
modeled maximum value. Finally a relative error ܴܴܧ is defined for multiple values collected in a specific 
location or region. The local data set is reduced to define three values, minimum, maximum and mean, which 
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represents the physics at a particular location (for e.g. runup or drawdown). The error is then defined similarly 
as the ܺܣܯ error with these localized values. The allowable errors according to Synolakis et al. (2007) are 
shown in Table 2. 

 
Table 2. Allowable errors in the NTHMP benchmarking tests suggested by Synolakis et al. (2007). 

Category Allowable errors (max/err/rms) 
Analytical Solution <5% 

Laboratory Measurements <10% 
Field Measurements <20% 

 
4.2.1  BP1 Analytical solution: Solitary wave on a simple beach 

The test case is based on the analytical solution of a solitary wave propagation and runup on a simple 
beach (Titov and Synolakis, 1995). The bathymetry consists of a channel of constant depth ݀ connected to a 
plane sloping beach of angle ߚ ൌ ݔ .2.88° ൌ 0 is the initial shoreline location and the toe of the beach is 
situated at ݔ ൌ ܺ௢ ൌ ݔ is initially centered at ܪ A solitary wave of height .ߚݐ݋ܿ݀ ൌ ܺ௦ at ݐ ൌ 0. The benchmark 
test is evaluated for the case of ܪ ൌ 0.0185݀. The initial conditions for the test is set as 

 
 

,ݔሺߟ 0ሻ ൌ 0.0185 sechଶ ൮ඨ3 ∗
0.0185
4
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݃
݀
,ݔሺߟ 0ሻ [14] 

,ݔሺݒ  0ሻ ൌ 0  
 

While the analytical solution is one-dimensional, the 2D model with one cell width is set up to solve this 
test case. The model simulations of the free surface profiles are compared with analytical solutions at 
specified time steps. Further the free surface elevations at two locations are also compared with the analytical 
solutions. The model errors for the BP1 test case are summarized in Table 3, which are all such that ߳ ൑ 5%. 

 
Table 3. NTHMP model errors for BP1 shown for surface profiles at ݐ ൌ ሺ35~65ሻ along with the mean error 

in the entire duration of the computation and water surface time series at ݔ ൌ ሺ0.25,9.95ሻ shown along with the 
maximum amplitude and run up error. 

 RMS MAX 

ݐ ൌ 35 1% 1% 
ݐ ൌ 40 1% 1% 
ݐ ൌ 45 1% 0% 

ݐ ൌ 50 1% 0% 

ݐ ൌ 55 0% 1% 

ݐ ൌ 60 0% 2% 

ݐ ൌ 65 0% 1% 

MEAN 1% 1% 

ݔ ൌ 9.95 1% 1% 

ݔ ൌ 0.25 1% 1% 
Mean 1% 1% 

 
4.2.2 BP4 Laboratory experiment: Solitary wave on a simple beach 

This test case coincides with the BP1 test case and requires model comparison with measured 
experimental data. The experiment was performed in a 32 meter long wave tank at California Institute of 
Technology (Hammack, 1972; Goring, 1978; Synolakis 1986). More than 40 experiments with solitary waves 
were conducted with ܪ/݀	 ൌ 0.021	~0.626. The wave with ܪ/݀ ൌ 0.0185 resulted in a non-breaking wave test 
case, simulating a realistic tsunami.  

Hence this case was used as a test case for the benchmark validation. The initial and boundary 
conditions for BP4 are the same as BP1 with a constant water depth of 0.3 m. The measured free surface and 
runup locations are compared as part of the BP4 test case. The model errors for BP4 test cases are 
summarized in Table 4 which are all such that ߳ ൑ 10%.  
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Table 4. NTHMP model errors for BP4 shown for surface profiles at ݐ ൌ ሺ30~70ሻ along with the mean error in 

the entire duration of the computation shown for the cases of ܪ ൌ 0.0185 and ܪ ൌ 0.3. 
 RMS MAX 

ࡴ ൌ ૙. ૙૚ૡ૞ 
ݐ ൌ 30 3% 4% 
ݐ ൌ 40 3% 5% 
ݐ ൌ 50 4% 3% 
ݐ ൌ 60 6% 8% 
ݐ ൌ 70 6% 4% 
Mean 6% 5% 

ࡴ  ൌ ૙. ૜  
ݐ ൌ 15 4% 5% 
ݐ ൌ 20 5% 6% 
ݐ ൌ 25 4% 6% 
ݐ ൌ 30 3% 4% 
Mean 6% 5% 

 
4.2.3 BP6 Laboratory experiment: Solitary wave on a conical island. 

This test case was chosen to perform the validation of a three-dimensional case. This test case is based 
upon a laboratory experiment designed to study the inundation of Babi Island due to the December 12, 1992 
tsunami (Yeh et al., 1994). While the tsunami attacked the north face of the conical island, extremely high 
inundation was observed on the south side of this island. A model of this island was built and tested in the US 
Army Engineer Waterways Experimental Station (Briggs et al., 1995). The test was conducted in a 29.3 ൈ 30m 
wave basin with a wavemaker on one end of the wave basin. The island was designed as a truncated right 
circular cone with diameters of 7.2 m and the toe and 2.2m at the crest. The vertical height of the island was 
approximately 0.625 m with a beach face slope of 14°. The island was tested in a water depth of 0.32 m in the 
wave basin. The solitary wave propagation around the conical island is shown in Figure 3. The wave 
approaches the conical island shown in Figure 3(a). The solitary wave splits around the island (Figure 3(b)), 
wraps around the island (Figure 3(c)) and runups on the back face of the island (Figure 3(d)). 

 

 
        (a) ࢚ ൌ ૞. ૟ૡ	࢙                  (b) ࢚ ൌ ૡ. ૝૟	࢙                (c) ࢚ ൌ ૚૛. ૜૞	࢙               (d) ࢚ ൌ ૚૞. ૠ૞	࢙ 

Figure 3. Solitary wave runup around a conical island shown at ݐ ൌ (a) 5.68ݏ, (b) 8.46ݏ, (c) 12.35ݏ and  
(d) 15.75ݏ for ܪ/݀ ൌ 0.181. 

 
As part of this test, comparison of the model simulations are made with wave gauge measurements in the 

wave basin and along the slope of the island. The model errors for BP6 test are summarized in Table 5. It was 
found that the mean errors were such that ߳ ൑ 10%. 

 
Table 5. NTHMP model errors for BP6 shown at 4 gauge locations for three cases of ܪ ൌ ܪ ,0.045 ൌ 0.096 

and ܪ ൌ 0.181. The ܴܺܣܯ ,ܵܯ and runup errors are summarized compared with laboratory measurements. 
 CASE A: ࡴ ൌ ૙. ૙૝૞ CASE B: ࡴ ൌ ૙. ૙ૢ૟ CASE C: ࡴ ൌ ૙. ૚ૡ૚ 
 RMS MAX RMS MAX RMS MAX

Gauge #6 5% 1% 6% 6% 8% 11% 
Gauge #9 6% 5% 7% 1% 7% 2% 

Gauge #16 9% 8% 5% 7% 9% 2% 
Gauge #22 7% 12% 5% 11% 5% 13% 

Mean 6% 8%     
Runup 11% 6% 8% 2% 8% 3% 

Mean (Runup) 11% 6%     
 

4.2.4 BP9 Field measurements: Okushiri Island tsunami 
This test case refers to the July 12, 1993 tsunami event in Japan. The tsunami was generated by 

௪ܯ ൌ 7.8 Hokkaido-Nansei-Oki earthquake that severly inundated coastal areas in the north of Japan. 
Majority of the damage was concentrated around the Okushiri Island located west of Hokkaido. Up to 31.7 m 
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of tsunami runup was reported close to Monai village. As part of the validation case, high-resolution 
bathymetry was provided to perform the numerical test. Initial wave conditions are provided as boundary 
conditions for the simulations. The tsunami runup around Okushiri Island was measured by the Hokkaido 
Tsunami Survey Group (1993) which reported up to 32m of tsunami wave runup. The snapshots of the 
tsunami simulation around Okushiri Island is shown in Figure 4. The initial surface elevation assuming 
instantaneous surface deformation is provided by the NTHMP test case. The simulation in Figure 4 is shown 
for the parent grid with resolution of 450m. Nested grids are used to accurately simulate tsunami inundation 
on Okushiri Island with grids of resolution 450m down to 50m. The accuracy of runup measurements in the 
simulations are dependant on the grid resolution of the DEM that was used. 

 

 
                  (a) ࢚ ൌ ૙	࢙             (b) ࢚ ൌ ૜ૢ૛	࢙          (c) ࢚ ൌ ૠ૚૜	࢙         (d) ࢚ ൌ ૚૛ૠ૚	࢙ 

Figure 4. Tsunami wave surface elevations during the 1993 Japan tsunami event shown at ݐ ൌ	(a) 
 .ݏ	and (d) 1271 ݏ	713 (c) ,ݏ	392 (b) ,ݏ	0

 
The numerical results are validated with the tide gauge measurements at Iwanai and Esahi. Further 

comparisons are made with the measured runup values around the Coast of Okushiri Island. The free surface 
elevation errors with the gauge measurements are within the desired range of expected errors as shown in 
Table 6. However, the errors in runup measurements are quite large in some locations, beyond the 
recommended 20%. These runup errors may be explained through the uncertainty in the input bathymetry, 
topography and initial condition data. Further, data on local friction on land and grid resolution can also affect 
the simulation results. Hence, it is suggested to quantify the uncertainties in real field simulations for the 
model in the future. 

 
Table 6. NTHMP model errors for BP9 shown at measured tide gauge locations and run up locations. 

Locations MAX/ERR 
IWANAI 11% 
ESASHI 15% 

RUNUP LOC #1 9% 

RUNUP LOC #2 4% 

RUNUP LOC #3 15% 

RUNUP LOC #4 4% 

RUNUP LOC #5 1% 

RUNUP LOC #6 2% 

RUNUP LOC #7 23% 

RUNUP LOC #8 18% 

RUNUP LOC #9 1% 

RUNUP LOC #10 0% 

RUNUP LOC #11 14% 

RUNUP LOC #12 2% 

RUNUP LOC #13 12% 

RUNUP LOC #14 21% 

RUNUP LOC #15 8% 

RUNUP LOC #16 3% 

RUNUP LOC #17 4% 

RUNUP LOC #18 11% 

RUNUP LOC #19 6% 

Mean 9% 
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5 CONCLUSION 

A fast shock capturing finite volume based NSW solver is implemented on GPUs using NVidia’s CUDA 
library. The solver is positivity preserving and preserves the exact “C” state of the NSW solution at rest. The 
NSW solver is second order in space and time and computationally fast due to the implementation on the 
GPUs. The solver is designed to simulate tsunami generation due to earthquakes, propagation and inundation 
on land. The model has been verified against analytical solutions to confirm the salient features of the NSWE 
and the implementation of the solver on the GPUs. The model has been validated with the benchmark cases 
specified by NTHMP, NOAA. The benchmarking test cases include analytical solutions, laboratory 
experiments and field measurements. The ܴܺܣܯ ,ܵܯ and ܴܴܧ has been measured in all the test cases to 
compare with the expected results. The computed errors are below the suggested rates of ߳ ൑ 5% for 
analytical solutions, ൑ 10% for laboratory experiments and ൑ 20% for field observations and can be 
successfully implemented for the purpose of tsunami risk assessment and hazard mitigation.  
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ABSTRACT  
 
In this study, an approach for computational hydrodynamics (CHD) simulations with high performance 
computing using the parallel architecture, PGAS-UPC, is developed. UPC hybrids the advantages of MPI’s 
scalability and OpenMP’s direct memory access, and could minimize the possible stagnation in computational 
speedup with an increasing number of CPUs deployed for the simulations. For evaluation, the computational 
performance of UPC-CFD is compared with that of OpenMP and MPI. Two incompressible CHD cases, 
namely (a) Blasius boundary layer flow, and (b) Poiseuille’s flow, are tested. The accuracy of the proposed 
UPC-CHD model for both CHD cases is first verified by comparing with the respective analytical predictions. 
The computational efficiency of UPC-CHD is then demonstrated by comparing with the respective versions of 
MPI and OpenMP at their basic designs, in a SGI UV-2000 server with 100 CPUs. The positive results from 
the computational performance analysis have demonstrated that UPC-CFD is a viable alternative for future 
large-scale CHD simulations. 
 
Keywords: Computational hydrodynamic simulations; PGAS-UPC; MPI; OpenMP; high performance computing. 
 
 
1 INTRODUCTION 

 Computational hydrodynamics (CHD) simulations have garnered importance for evaluating and 
optimizing engineering design and applications. Examples include flow simulations within the tight spacers of 
membrane modules in attempts to minimize fouling tendency and flow short-circuiting (Y. L. Li et al., 2011; P. 
Sousa et al., 2014; S. S. Bucs et al., 2014), and flow simulations in porous-media related applications with 
complex geometrical representation of the granular materials (W. Sobieski and Q. Zhang, 2017; D. Jajcevic et 
al., 2013). These flow simulations would usually involve large-scale numerical domains which are expensive 
computationally. For example, a n million two-dimensional (2D) mesh involving the flow continuity and fluid 
momentum equations would result in an approximate 3n million cells information to be managed during each 
iteration.  Thus, high performance parallel computing with multiple processors (CPUs) is now commonly 
adopted for these simulations to speed up the simulation time. 

Message Passing Interface (MPI) and Open Message Interface (OpenMP) are currently the two most 
common computer architectures for large scale CHD simulations. In MPI, the communication among the 
CPUs involves either blocking or non-blocking methodologies (S. Jamshed, 2015) The former holds the 
program execution until the message buffer slots within the computer memory is ready, which might incur 
significant idle time for a large number of CPUs. The latter proceeds on with the program execution and does 
not wait for the communication buffer to be completed. Thus, idle time is eliminated, however, data loss might 
be experienced. The in-built architecture of MPI is postulated to be inefficient for CHD architectures having the 
large number of CPUs and high levels of memory hierarchy (S. Jamshed, 2015; N. Gourdain et al., 2009). On 
the other hand, OpenMP employs a shared memory architecture and does not require the message passing in 
MPI, which renders its ease in applicability. However, its scalability is limited for applications which involves 
significant parallelization (S. Jamshed, 2015). 

This study aims to develop an approach for CHD simulations using the parallel computer architecture of 
the Partitioned Global Address Space (PGAS). PGAS provides the following benefits: (a) data having direct 
affiliation with the respective computing thread (CPU) are stored in the private/local memory component which 
can possibly be accessed at the fastest time possible, (b) all threads/CPUs have direct access to the singular 
global shared memory, and (c) an ability to achieve a good balance among programmability, performance 
scalability and portability. The extension of PGAS to the ISO C language, known as Unified Parallel C (UPC), 
was carried out in this study to demonstrate its computational effectiveness in a shared memory SGI system.  

This paper is structured as follows. In section 2, we describe the specific numerical scheme to resolve 
two 2D incompressible CHD flow cases: (CHD case A) Blasius boundary layer (BL) flow and (CHD case B) 
Poiseuille’s flow. Section 3 describes the developed PGAS-UPC architecture, which is then followed by 
comparing its computational performance in the shared memory SGI system in section 4. Lastly, section 5 
summarizes the important findings from this study.  
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2 NUMERICAL DISCRETIZATION  
 The representation of the viscous, unsteady and incompressible flow in full conservative form (E. F. Toro, 

2009; M. Kermani and E. Plett, 2001) with the absence of external body forces, can be expressed in the 
compact form of Equation 1 as follow:  
 

∂Q
∂t

൅
∂F
∂x

൅
∂G
∂y

ൌ
∂G୚୶
∂x

൅
∂G୚୷
∂y

																																																																																																														ሾ1ሿ 

 
where Q is the conservative temporal term, F and G are the convective flux vectors in the x and y directions 
respectively, and G୚୶ and G୚୷	are the viscous flux vectors in the x and y directions respectively.  The exact 
representation of Q, F, G, G୚୶ and G୚୷ (E. F. Toro, 2009; M. Kermani and E. Plett, 2001) are shown in Equation 
2. 
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൪ , G୚୷ ൌ μ ൦

0
u୷
v୷

uv୶ ൅ vv୷

൪	ሾ2ሿ 

 
where ρ is the density of water (kg/mଷሻ, u is the horizontal velocity (m/s), v is the vertical velocity (m/s), p is 
the pressure (kg/mଶ. sሻ, E୲ is the energy term (kg.mଶ/sଶሻ, μ is the dynamic viscosity of water (kg/m. sሻ, u୶ is 
the x-derivative of the u velocity, u୷ is the y-derivative of the u velocity, v୶ is the x-derivative of u and v୷ is the 
y-derivative of v.  

Equation 2 can be discretized over the control volume as shown in Figure 1 (E. F. Toro, 2009; M. 
Kermani and E. Plett, 2001). All others nodes within the numerical domain undergo the same discretization 
procedure. The resultant discretized form is shown in Equation 3.  
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where ∂Qഥ is the discretized form of Q which is defined as either ሺQ୬ା
భ
మ െ Q୬ሻ for the predictor step, or ሺQ୬ାଵ െ

Q୬ሻ for the corrector step.  
 

 
Figure 2.1. Representative control volume of a single node for discretizing the viscous, unsteady and 

incompressible Navier-Stokes (NS) in Equation 1. 
 

The temporal term in Equation 3 undergoes the 2-step explicit scheme from the Lax-Wendroff family of 
predictors-correctors. The predictor step computes the flow condition at the half-time step as shown in 
Equation 4, whereas the corrector step corrects the predicted values by employing a central differencing 
method with respect to time at the full-time step in Equation 5. For the respective computations at the half- 
and full time step, the convective and viscous fluxes are first computed before computing for Q୬ାଵ/ଶ and	Q୬ାଵ.  
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The convective fluxes (F and G) in Equation 3 are computed by the Roe scheme which is represented by 

Equations 6 and 7 respectively (E. F. Toro, 2009; M. Kermani and E. Plett, 2001). The computed F୉ at node (j, 
k) equates to F୛ of node (j+1, k), and the computed G୒ at node (j, k) equates to Gୗ of node (j, k-1). . 
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where FE

L  and F୉
ୖ are the inner and outer values of F computed at the east face, G୒

୐  and G୒
ୖ are the inner and 

outer values of G computed at the north face, λ෠୉
୩ and λ෠୒

୩  are the respective eigenvalues of the Jacobian matrix 
determined at the Roe’s averaged condition, T෡୉

୩ and T෡୒
୩ are the respective eigenvectors corresponding to the 

determined eigenvalues, and both δw୉
ሺ୩ሻand δw୒

ሺ୩ሻ are the respective wave amplitudes.  
To compute the eigenvalues, corresponding eigenvectors and wave amplitudes of both F and G, similar 

computational procedures are undertaken. Here, only the computations for the required parameters of F are 
shown for brevity. For further details, the reader is referred to references (E. F. Toro, 2009; M. Kermani and E. 
Plett, 2001). For each of the nodes within the numerical domain, the left (L) and right (R) flow conditions are 
first computed by Equations 8 and 9 respectively based on the 3rd order upwind-biased algorithm (E. F. Toro, 
2009; M. Kermani and E. Plett, 2001).  
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where q represents the primitive variables (u, v).  

Subsequently, the Roe’s averaged conditions are determined in Equations 10 to 13 (E. F. Toro, 2009; M. 
Kermani and E. Plett, 2001). Since the fluid is incompressible, no averaged condition is required for the 
density (ρ) parameter.  
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where	u୉ෞ, v୉ෞ, H୉෢  and c୉ෝ  are the Roe averaged conditions and γ =1.33 for the ratio of specific heats applied to 
water  
 
With the Roe’s averaged conditions, the values of	λ෠୉

୩, T෡୉
୩ and δw୉

ሺ୩ሻ are then computed in the following (E. F. 
Toro, 2009; M. Kermani and E. Plett, 2001).  
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where δ୔୉ = p୨ାଵ,୩ െ p୨,୩, ߜu||୉ = u||୨ାଵ,୩ െ u||୨,୩, δ஡୉ = ρ୨ାଵ,୩ െ ρ୨,୩, δ୳ୄ୉ = uୄ୨,୩ାଵ െ uୄ୨,୩ and u||୉ଶ = V୉ሬሬሬሬԦ. V୉ሬሬሬሬԦ െ uୄ୉

ଶ .  
 

Lastly, the viscous terms (G୚୶ and	G୚୷) in Equation 3 can be discretized using the 2nd order central 
differencing scheme (E. F. Toro, 2009; M. Kermani and E. Plett, 2001) as shown.  
 

G୚୶,୉ െ G୚୶,୛
∆x

ൌ
Gሺ୧ାଵ,୨ሻ െ 2Gሺ୧,୨ሻ ൅ Gሺ୧ିଵ,୨ሻ

ሺ∆xሻଶ
																																																																											ሾ17ሿ 

 
G୚୷,୒ െ G୚୷,ୗ

∆y
ൌ
Gሺ୧,୨ାଵሻ െ 2Gሺ୧,୨ሻ ൅ Gሺ୧,୨ିଵሻ

ሺ∆yሻଶ
																																																																												ሾ18ሿ 

The implemented numerical scheme as described above was examined for the two incompressible CHD 
flow cases: CHD case A - Blasius boundary layer flow and CHD case B - Poiseuille’s flow. The respective 
boundary and initial conditions adopted are represented in Figures 2.2 and 2.3. The water density and 
temperature of all numerical domains were kept at 1000kg/mଷ and 293.15K. To validate the accuracy of the 
implemented numerical scheme, a comparison between the attained numerical results and analytical values 
was carried out for both cases which will be discussed in section 4 of this paper.   
 

 
Figure 2.2.  Adopted numerical domain for CHD case A (Blasius boundary layer flow). 
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Figure 2.3. Adopted numerical domain for CHD case B (Poiseuille’s flow). 

 
3 UPC IMPLEMENTATION OF CHD  

 The UPC-CHD model was developed by the described numerical scheme in section 2. Firstly, the time-
consuming functions and types of data dependences within the model were identified. The data dependences 
and model workflow dictated the forms of algorithms employed for data divisions and storage. The work 
sharing function of PGAS was then implemented to parallelize the developed UPC-CHD model.  

The functionality of the proposed UPC-CHD model is summarized as follows. The flux predictor at the 
(n+1/2) time level is first computed, which is then followed by the flux correction at the (n+1) time level by 
repeating the prediction process with the fluxes from the half-time step as the input data. Both the flux 
predictor and flux corrector are within the nested loop for which the complexity of the algorithm is identified as 
O(ܰଶ) where N is the number of nodes undirectionally. The developed parallel algorithm in UPC-CHD aims to 
minimize the total run time of the predictor and corrector fluxes within each cell, as both occupy the largest 
portion of the total computational time. Within the model, the original nested loop is first divided into multi sub-
loops to prevent data confliction issue. Several functions, unique to the PGAS-UPC architecture, were 
employed within the UPC-CHD model as described in Table 3.1. 
 

Table 3.1. Description of functions unique to PGAS-UPC architecture. 
UPC function/identifier Functionality 

upc_barrier To synchronize all threads (CPUs) before going to the next function after every 
nested loop 

upc_forall To distribute the computations within the nested loops in UPC-CHD model 
THREADS To determine total number of threads at run time 

MYTHREAD To identify each thread 

 
 All threads with MYTHREAD from 0 to THREADS-1 run through the identical code (i.e. the nested loop) 

except for the fluxes computation at the first- and last-row of each sub-domain respectively. Each thread is 
designed to calculate the fluxes on the different sub-domains. To demonstrate the effectiveness of the PGAS-
UPC architecture, the accuracy and performance of the developed UPC-CHD model for the two 
incompressible CHD flow test cases are examined. 
 
4 MODEL VERIFICATION AND PERFORMANCE EVALUATION  

Validation of the numerical scheme was first carried out by comparing the obtained numerical results with 
the respective analytical predictions for both CHD test cases. The physical dimensions and initial 
hydrodynamic conditions of the deployed numerical domains for CHD case A and B are described in Table 
4.1. For CHD case A, the numerical results were compared with the analytical predictions of (White, 1991) 
whereas Equation 19 was employed to validate the numerical results for CHD case B. As observed from 
Figures 4.1 and 4.2, there is a good agreement between the two for both cases.  
 

u୶
U
ൌ
ሺyଶ െ hଶሻ

2 ∗ U ∗ μ
൬
∂p
∂x
൰																																																																				ሾ19ሿ 

 
where u୶ is the horizontal velocity value obtained (m/s), U is the freestream velocity (m/s), y is the respective 
y-distance (m), h is the total vertical height of the domain (m), μ is the dynamic viscosity of the fluid in the 
domain (kg/m. s), x is the total horizontal distance of the domain (m) and p is the pressure (kg/m. sଶሻ. 
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Table 4.1. Dimensions and initial hydrodynamic conditions of numerical domains for CHD cases A and B. 
Parameter Case A Case B 

Distance-x & Distance-y (m) 0.3 & 0.02 0.5 & 0.00016 
No. of nodes 65 x 65 300 x 45 

Freestream velocity, U (m/s) 10 26 
dp
dx
	ሺ
Pa
m
ሻ 0 1.22 x 10଻ 

delta-t (s) 10ି଺ 10ି଺ 
Total runtime (s) 0.1 0.1 
Temperature (K) 293.15 293.15 

Kinematic viscosity (m2/sሻ 10-6 10-6 
 

 
Figure 4.1. Comparison between numerical values from UPC-CHD model with White’s analytical predictions 

for CHD case A (Blasius boundary layer flow). 
 

 
Figure 4.2. Comparison between numerical values from UPC-CHD model with Equation 19 for CHD case B 

(Poiseuille’s flow). 
 

Comparison of the computational performance of UPC against MPI and OpenMP implementation at their 
basic designs in the SGI UV-2000 server was carried out for both CHD flow cases by computing the 
respective speedup. The UPC-CHD model was operated for a total duration of 100s with a regular Cartesian 
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grid of 4 million cells for case A and 100 million cells for case B. The respective speedup attained, as 
computed in Equation 20, for the varying number of CPUs deployed in UPC, OpenMP and MPI were 
summarized in Tables 4.2 and 4.3 for CHD case A and CHD case B respectively. The following observations 
were made from the attained speedup results.  

 UPC and OpenMP exploited the advantages of data locality by reading and writing directly to the 
internal memory section without incurring any delays with the number of CPUs below 16; 

 MPI was still effective in its speedup with the number of CPUs below 16; 
 UPC was still effective in its speedup with the number of CPUs beyond 100 with no signs of 

deterioration; 
 UPC and MPI performed more effectively than OpenMP with the number of CPUs beyond 16; 
 OpenMP showed signs of deterioration with the number of CPUs beyond 16 which could be 

attributed to its over-accessing of the shared-memory section in the SGI UV-2000 server; 
 Speedup with MPI began to be less significant with the number of CPUs beyond 64 which could be 

attributed to the outweighing of the actual computational time by the total message processing time 
on each CPU; 

 The preceding could further be ascribed to the overloading of synchronized messages to be 
processed in the system at each time step which exceeded the total data processing time.  

 

Speedup ൌ
1

ቂቀ
P
Nቁ ൅ Sቃ

																																																																				ሾ20ሿ 

 
where P is the parallel fraction, S is the serial fraction and N is the number of CPUs available.  
 

Table 4.2. Comparison of speedup among UPC, MPI and OpenMP for varying number of CPUs for CHD  
case A (Blasius boundary layer flow). 

Cores UPC speedup MPI speedup OpenMP speedup 
1 1.0 1.0 1.0 
2 2.0 2.0 1.9 
4 4.0 4.0 3.2 
8 7.9 7.9 6.3 

16 15.7 15.8 6.9 
32 28.6 26.7 2.4 
64 52.9 45.1 2.8 
100 80.9 46.9 2.3 

 
Table 4.3. Comparison of speedup among UPC, MPI and OpenMP for varying number of CPUs for CHD case 

B (Poiseuille’s flow). 
Cores UPC speedup MPI speedup OpenMP speedup 

1 1.0 1.0 1.0 
2 2.0 2.0 1.9 
4 4.0 4.0 3.5 
8 7.8 7.9 6.3 

16 15.8 15.8 7.2 
32 30.1 26.5 2.8 
64 54.6 46.7 3.8 
100 82.9 47.2 2.6 

 
5 CONCLUSIONS 

 In this study, we developed a model for computational hydrodynamic simulations using the PGAS-UPC 
computing architecture for parallelization. Two flow cases, namely the (a) Blasius boundary layer flow and (b) 
Poiseuille’s flow, were simulated with the developed model. The accuracy of the proposed UPC-CHD model 
was first verified by comparing the simulation results with the respective analytical solutions for each case. 
The model computational speedup was then evaluated by comparing the total run time with that of MPI and 
OpenMP at their basic designs using a SGI UV-2000 server. The results showed that UPC performed better 
than MPI and OpenMP with a near linear speedup until the maximum 100 CPUs available, which underscored 
UPC’s capability to expedite the computational process by exploiting the data locality during parallelism. We 
are hopeful that the proposed CHD approach with PGAS-UPC computer architecture can serve as an 
effective alternative for large scale simulations in the future.  
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ABSTRACT 
 
The oscillating characteristics and cyclic mechanisms in hydraulic jump are investigated and reproduced using 
a weakly-compressible XSPH scheme which includes both an algebraic mixing-length model and a two-
equation turbulence model to represent turbulent stresses. The numerical model is applied to analyze 
oscillations of different jump types based on the laboratory experiments by Mossa (1999). Experimental 
investigations were carried out in the hydraulic laboratory of the Mediterranean Agronomic Institute of 
Valenzano (Bari) in a channel of 7.72 m long with a rectangular cross section of a width of 0.30 m and a 
height of 0.40 m. The comparison between SPH and experimental results shows an influence of different 
turbulence models, such as mixing length or Standard k-ε, on the amplitude spectrum and peak amplitude of 
the time-dependent surface elevation upstream and downstream of the jump. Numerical results show 
satisfactory agreement with measurements and most of the peculiar features of the flow are qualitatively and 
quantitatively reproduced. By analyzing a single cycle of the oscillating phenomena of a simulated jump 
(periodic formation of different jump types) it is possible to indicate the correlation between the vortex 
structures of the roller. Vortices are characterized by a clockwise or anti-clockwise rotation depending on 
which type of jump is present, particularly for configurations with alternations of wave and B jumps.  

 
Keywords: Hydraulic jumps; smoothed particle hydrodynamics models; oscillating characteristics. 

 
 

1 INTRODUCTION   
 Some researchers pointed out the existence of oscillating phenomena, and particularly of cyclic variation 
of jump types over long-duration experiments, under some flow conditions (e.g. Nebbia, 1942; Hager and 
Bretz 1986; Ohtsu and Yasuda, 1991; Abdel Ghafar et al., 1995; Mossa and Tolve, 1998; Mossa, 1999; Wang 
and Chanson, 2015; Wang et al., 2014). 
 These oscillating characteristics can be: a) changes of the different types of hydraulic jumps (variation 
from one type to another); b) horizontal movements of the jump toe (Long et al., 1991); c) variations of the 
velocity components and pressure in the region close to the jump roller; d) process of formation, development 
and coalescence of the large-scale flow structures.  
 All standard experiments by Mossa (1999), carried out in a channel with a non-erodible, moulded bed 
profile, took into account previous studies by Abdel Ghafar et al. (1995) and Nebbia (1942) to investigate the 
oscillating characteristics of hydraulic jumps.  
 Numerical modeling of the hydraulic jump has always proved to be difficult for traditional Eulerian 
techniques, owing to its oscillating characteristics which lead to the propagation of short breaking waves which 
prevented from an accurate capturing of the free-surface (Mossa, 1999). In this view, mesh less Lagrangian 
techniques appear to be more suitable to represent the complex and highly-unsteady free-surface pattern 
which characterizes a hydraulic jump. Among the mesh less techniques, one of the most versatile techniques 
is Smoothed Particle Hydrodynamics (SPH) which is developed since 1977 to simulate astrophysical 
problems (Liu and Liu, 2006; Lucy, 1977). It is presently one of the most popular mesh-free methods for 
numerical simulations of complex, free-surface flows (e.g. Dalrymple and Rogers, 2006; Capone et al., 2010; 
Manenti et al., 2012; De Padova et al., 2013; De Padova et al., 2014; Jonsson et al., 2016; De Padova et al., 
2016).  

The method is fully Lagrangian and obtains, through a discrete kernel approximation. The solution of the 
equations of motion for each of the fluid particles in which the flowing volume is discretized.  
The free surface requires, therefore, no special approach, such as in the case of the Volume-of-Fluid method 
or of Lagrangian surface-tracking techniques. Furthermore, the method can easily treat rotational flows with 
vorticity and turbulence. The basics of the methodology are described in textbooks and review papers (e.g.: 
Violeau, 2012; Violeau and Rogers, 2016).  

The SPH turbulence models used for engineering applications have been based on RANS (Reynolds-
averaged Navier–Stokes) approaches with first-order closure (eddy viscosity models), using mixing length 
(Violeau et al., 2002) or k-models (Violeau, 2004). Both turbulence model were successfully applied to SPH 
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analyses of rotational flows, such as wave overtopping (Shao, 2006), or spilling breakers (De Padova et al., 
2016). 

The purpose of this paper is to use a weakly-compressible XSPH scheme, together with either an 
algebraic mixing-length turbulence model or a two-equation turbulence model, to study oscillating 
characteristics and cyclic mechanisms in different jump types based on the laboratory experiments by Mossa 
(1999).  
 
2 EXPERIMENTAL SET UP  
 Experimental investigations were carried out in the hydraulic laboratory of the Mediterranean Agronomic 
Institute (hereafter referred to as IAM) in Valenzano (Bari).  It measured at 7.72 m long and 0.3 m wide 
rectangular channel with sidewall height of 0.40 m (Fig.1). The walls and bottoms of both channels were made 
of Plexiglas. 

 
 

Figure 1. Sketch of the channel at the hydraulic laboratory of the Mediterranean Agronomic Institute (IAM) of 
Valenzano (Bari). 

 
Discharges were measured with a triangular sharp-crested weir. Measurements of the upstream and 

downstream water depths were carried out with electric hydrometers, type point gauge supplied with 
electronic integrators which allowed the estimate of the time-averaged flow depth. The hydrometers were 
supplied with verniers allowing measurement accuracy of ±0.1 mm.  

Water discharge and hydrodynamic conditions were regulated by two gates placed at the upstream and 
downstream ends of the channels. The desired tailwater level was maintained by using the downstream gate. 
Figure 2 shows the shape of the wooden bed that had been used for the configuration carried out in the 
channel.  The profile was equal to one of those measured by Abdel Ghafar et al. (1995) in the central 
longitudinal section of the channel, when equilibrium scour profiles were reached. 

 

 
Figure 2. Shape of the wooden bed used for configurations carried out in the channel. 
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Table 1 lists the main experimental parameters of the investigated hydraulic jumps, where Q is 

the discharge; y1 is the water depth in section 1, located at the downstream end of the horizontal 
apron, i.e. where the cavity begins; yt is the water depth downstream of jump where a second 
horizontal apron is located; F1=V1/(gy1)

0.5 is the Froude number in section 1 and Re=V1y1/ν is the 
Reynolds number, with V1 indicating the mean velocity of supercritical flow in section 1, ν the water 
kinematic viscosity and g the acceleration of gravity. During all experiments, water temperature was 
measured by a thermometer with an accuracy of 10-1 ˚C.  
 

Table 1. Experimental parameters of the analyzed undular hydraulic jump 
 Q 

[l/s] 
y1 

[cm] 
yt 

[cm] 
y1/ yt F1 Re 

Jump 
type 

9.60 2.50 7.70 3.08 2.58 31894 B and wave 

 
3 SPH NUMERICAL METHOD  
 SPH simulations were obtained by a standard weakly compressible SPH (WCSPH) scheme (Monaghan, 
1992), where a reduced compressibility modulus of 106 Pa was assumed for water. A pressure smoothing 
procedure was applied at every time step to show the difference between local and hydrostatic pressure in 
order to reduce the numerical noise in pressure evaluation.  
The SPH code was developed at the Fluid Mechanics Laboratory of the Department of Civil Engineering and 
Architecture of the University of Pavia, and had been used extensively to simulate several kinds of hydraulic 
phenomena, such as scouring downstream of sluice gates (Sibilla, 2008), hydraulic jumps (De Padova et al., 
2013) or spilling breakers (De Padova et al., 2016). SPH particle approximations of flow quantities and their 
derivatives were obtained by the use of the Wendland-C4 kernel function W (Wendland, 1995), renormalized 
to improve the consistency and accuracy of the method (Sibilla, 2015).  
An algebraic mixing-length model and a two-equation model were used to represent turbulent stresses.  
The mixing-length model is based on the introduction of a mixing-length lm = fi min (κz, lmax), where κ =0.41 is 
the Von Kármán constant, z is the distance from the wall, lmax is a cutoff maximum value and 
 
 


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j j
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is a damping function which is less than unity; only near the free surface. The effect of fi is lower lm near the 
free surface, where a non-physical growth of the eddy viscosity may lead to numerical instabilities (De Padova 
et al, 2009; 2010).  
The two-equation model is a SPH version of the Standard k-ε turbulence model (Launder and Spalding, 
1974): 
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where Pk is the production of turbulent kinetic energy depending on the local rate of deformation, νT is the 
eddy viscosity and σk = 1, σε = 1.3, Cε1 = 1.44 and Ce2 = 1.92 are model constants whose values are those 
proposed for the standard k-ε formulation.  

According to the standard XSPH approach, at each time steps a new particle velocity 
T was obtained by 

explicit integration of the momentum equation (2) while a smoothed value 
S of velocity is obtained by: 
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and used for particle movement. The smoothing parameter φ controls the intensity of velocity filtering.  
According to a sensitivity analysis, the SPH simulation of the experimental test on hydraulic jump was 
performed by adopting a velocity smoothing coefficient in the XSPH scheme φ = 0.01.  
 
4 NUMERICAL TEST AND RESULTS 
 The 2D simulation of the hydraulic jump reported in Table 1 was performed in a physical domain 
consisting a rectangle of 3.3m long and 0.4 m high, shorter than the real channel in the test facility. The 
shorter domain was chosen in order to reduce the computational cost without influencing the quality of the 
numerical solution. The current incompressible SPH computations were executed up to t=50s from the 
beginning and it costs about 33 hours of CPU time using a personal computer (CPU 2.70 GHz and RAM 4.0 
GB PC).  
The accuracy of particle methods was influenced by the initial particle spacing Σ, as well as by the smoothing 
length, η. Both parameters must be taken into account when attempting to improve the resolution of the 
numerical simulation. It has been shown that the efficiency of the SPH kernel function depends also on the 
choice of the η /Σ ratio (Dehnen and Aly, 2012) and that a value η /Σ ≥ 1.2 should be preferred (De Padova et 
al., 2008).   
 The SPH simulation has been performed with initial particle spacing Σ equal to 0.008 m and constant 
value of /Σ =1.5. A sensitivity analysis was performed on turbulence modelling influence. According to the 
sensitivity analysis shown by De Padova et al. (2013) the test T1 was performed by adopting a mixing length 
turbulence model with lmax = 0.5 h2. It was chosen to adopt two-equation model (2) for test T2. Some of the 
results are summarized here. Table 2 lists the principal characteristics of SPH simulations.  
 

Table 2. Principal characteristics of SPH simulations 

   Test Turbulence model /Σ Np 

T1 mixing-length model 1.5 6000 

T2 k-ε turbulence model 1.5 6000 

              
 The results of the SPH simulations were carried out to analyze oscillations of different jump types. Their 
analysis was useful for the study of the phenomena, which appeared cyclic as well for the formation with 
evolution of the jump vortices. Both the mixing length model and the k-ε model yield similar results and were 
able to predict the oscillating characteristics and cyclic mechanisms in hydraulic jumps. 
 

(a) 

 

 

 
(b) 

 
 
 

(c) 
 
 
 

(d) 
 
 
 
 

 
Figure 3. Instantaneous SPH vorticity field in the SPH simulation of Test T1 a) t=16s; (b) t=20s; (c) 

t=24s; (d) t=28s. 
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Figure 4. Instantaneous SPH vorticity field in the SPH simulation of Test T2 a) t=15s; (b) t=21s; (c) 
t=27s; (d) t=32s. 

 
 The instantaneous vorticity field (Figs. 3a ÷ 4d) of the configuration with oscillations of the B and wave 
jump clearly indicates the transition phase between the jump types with both the turbulence models (T1 and 
T2). Vortices were characterized by a clockwise or anti-clockwise rotation depending on which type of jump 
was present. In particular, vortices were characterized by a clockwise rotation in the presence of the wave 
jump (Figs. 3b - 3d and Figs. 4b - 4d) and an anti-clockwise for the B jump (Figs. 3a - 3c and Figs. 4a - 4c) 
respectively.  
 Figures 5a - 6b show the amplitude spectra of the time series of the surface elevations, upstream and 
downstream of the jump for tests T1 and T2. From the analysis of the previously mentioned figures it is 
possible to observe the existence of a peak in each spectrum, as shown by Mossa (1999).  Consequently, as 
suggested by Mossa (1999), oscillating characteristic of wave and B jumps is quasi-periodic. Furthermore, as 
the spectra in Figures. 5a and 6a show a peak at a frequency similar to the one of the spectra in Figuress. 5b 
and 6b. It is possible to conclude that fluctuations of the surface profile downstream of the jump depended on 
alternations of jump types. The periodic formation of different jump types produces small waves downstream 
of the hydraulic jump.  
 Although both turbulence models yielded similar results, the detailed comparison of the amplitude spectra 
of the time series of the surface elevations upstream and downstream of the jump for tests T1 and T2, shows 
that the mixing-length results are closer to the experimental data than the k-ε ones. 
 Actually, figures 5a - 5b show a peak in each spectrum at a frequency slightly higher than 0.1 Hz, as 
shown by Mossa (1999), while figures 6a ÷ 6b show a peak at a frequency lower than 0.1 Hz. 
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Figure 5. Test T1: Amplitude spectrum of the time series of the surface elevations (a) upstream and 

(b) downstream of the jump 
 

 
Figure 6. Test T2: Amplitude spectrum of the time series of the surface elevations (a) upstream and 

(b) downstream of the jump 
 

 The quasi-periodic oscillations between the two jump types were accompanied by drastic instantaneous 
changes in the pressure and in the velocity components under the jump (e.g. Mossa, 1999).  Figures 7a - 8c 
show a part of the time history and the amplitude spectrum of the pressure. The horizontal (u) and vertical (v) 
velocity components measured at the bottom under the hydraulic jump T1 of Table 2, near the time –averaged 
position of the hydraulic jump toe are shown. From the analysis of the pressure amplitude spectrum (Fig. 8a) it 
is clear that even the pressure fluctuations were quasi-periodic and so strongly influenced by the oscillations 
between the B and wave jump types, as it is shown by the peak amplitude at the same frequency of the 
elevation spectra. 
 In the regions close to the roller, the amplitude spectra of the velocity components were characterized by 
a dominant peak at the same frequency of the elevation (Fig. 5a) and the pressure spectra (Fig. 8a).  
 Therefore, the analysis of the oscillating phenomena indicates a correlation among the surface profile 
elevations, velocity components and pressure fluctuations. In particular, the time histories (Fig. 7) shows that 
low pressures (low water depths) can be correlated with horizontal flow upstream of the wave-jump, while 
higher pressures (and depths) can be correlated with the upward flow caused by the roller in the B-jump 
phase. 
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(c) 

Figure 7. Test T1: Time series of (a) the pressure; (b) the horizontal (u) velocity component and (c) 
the vertical (v) velocity component measured at the bottom under the hydraulic jump 
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(a) 
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(c) 

Figure 8. Test T1: Amplitude spectrum of (a) the pressure fluctuations; (b) the horizontal (u) velocity 
component and (c) the vertical (v) velocity component measured at the bottom under the hydraulic jump 
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5 CONCLUSIONS 

The 2D SPH model is applied to the modelling of cyclic mechanisms in hydraulic jumps realized in the 
hydraulic laboratory of the Mediterranean Agronomic Institute of Valenzano (Bari). Oscillating characteristics 
in the hydraulic jump are investigated and reproduced using a weakly-compressible XSPH scheme, together 
with either an algebraic mixing-length or a two-equation turbulence model to represent turbulent stresses. A 
sensitivity analysis was therefore performed on the influence of different turbulence model.  

Both the mixing length model and the k-ε model proved to be able to predict the oscillating characteristics 
and cyclic mechanisms in hydraulic jumps. The numerical results showed indeed a satisfactory agreement 
with measurements, and most of the peculiar features of the flow were reproduced. By analyzing a single 
cycle of the oscillating phenomena of a simulated jump (periodic formation of different jump types) for both 
tests (T1 and T2), it is possible to indicate that there is correlation with the vortex structures of the roller. 
Vortices are characterized by a clockwise or anti-clockwise rotation depending on which type of jump is 
present, particularly for configurations with alternations of wave and B jumps. 

Although both turbulence models yielded similar results, the detailed comparison of the amplitude spectra 
of the time series of the surface elevations upstream and downstream of the jump for tests T1 and T2, shows 
that the mixing-length results proved to be closer to the experimental data than the k-ε ones. 

As observed experimentally by Mossa (1999), these numerical results show the existence of a peak at a 
similar frequency in the amplitude spectra of the time series of the surface elevations upstream and 
downstream of the jump. In the amplitude spectra of the pressure and in the amplitude spectra of the velocity 
components fluctuations are measured under the hydraulic jump. 

It is possible to conclude that the fluctuations of the surface profile downstream of the jump depended on 
alternations of jump types, and that the periodic formation of different jump types produces small waves 
downstream of the hydraulic jump. Therefore, the analysis of the oscillating phenomena indicates a correlation 
among the surface profile elevations, velocity components and pressure fluctuations, which is consistent with 
a regular, periodic alternation between a wave-jump and a B-jump, leading to the propagation of downstream 
waves. 
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ABSTRACT 
 
The discontinuous Galerkin methods are very attractive to shallow water models nowadays, as they can give 
more accurate results and achieve high parallel efficiency. However, recent researches reported that the 
discontinuous Galerkin methods on the unstructured triangle meshes suffer from being computationally 
expensive when compared with those traditional numerical methods. Therefore, a nodal discontinuous 
Galerkin model with quadrilateral meshes is proposed for shallow water equations in this study. The arbitrary 
quadrilateral elements along with the quadrature-free approach are introduced to improve the computational 
efficiency of nodal discontinuous Galerkin methods. Some numerical methods are also implemented in the 
model, such as the wetting and drying treatment, the maintaining of the well-balanced properties, and the 
positivity preserving of water depth. The developed model is verified with the oscillatory flow in the parabolic 
bowl problem. It is shown that the model with quadrilateral meshes is approximately 1.21 to 1.62 times more 
efficient, and the numerical error is 1.11 to 1.72 times smaller when comparing with the triangle meshes. 
 
Keywords: Shallow water equations; nodal discontinuous Galerkin method; quadrilateral elements; computational 

efficiency. 
 

1 INTRODUCTION 
 Nowadays, the discontinuous Galerkin (DG) method has become a popular approach in modeling the 
shallow water equations (SWE). Many researchers have implemented this new method for various 
hydrodynamic problems and reported its good performance of less numerical error and higher parallel 
efficiency. Kubatoko et al. (2009), analyzed the performance of DG method comparing with finite element (FE) 
method in ADCIRC models. The result indicated that the error of DG was less than that of FE by an order of 
magnitude, and the DG model also had displayed better convergence rates and higher parallel efficiency. 
Kesserwani and Wang (2014) compared the 2nd-order Runge-Kutta DG (RKDG) method with the MUSCL-
type finite volume (FV) method in modeling of the flood inundation problem, and showed that the RKDG2 
method can provide better results in modeling of shock propagations and reflections on the same mesh 
resolution. However, these researches also pointed out that the DG method suffered from being too 
computational expensive when comparing with the traditional FV and FE methods. This is mainly due to the 
fact that DG method contains a larger number of degrees of freedom, and the nonlinear terms in SWE lead to 
an excessive computational cost in numerical integration. 

With an aim of enhancing the computational efficiency, the nodal DG methods have been developed in 
recent decade. Coupling with the quadrature-free approach, the nodal DG methods are able to get rid of the 
full order integration in the basic implementation, and save the major computational cost. Besides, more 
recent studies also reported that the use of quadrilateral mesh could reduce the computational cost of nodal 
DG method (Wirasaet et al., 2010, 2014). The number of elements and edges in a quadrilateral mesh would 
be much less than that in a triangular mesh of the same element size. Consequently, the computational 
efficiency will be significantly improved with less computation in evaluating of volume and edge integral. In this 
regard, it is worthwhile to develop the nodal DG model with quadrilateral mesh for the sake of improving 
computational efficiency. 
 The motivation of this study is to develop a nodal DG model for two-dimensional SWE with arbitrary 
quadrilateral elements. A set of nodal basis is constructed from the Lagrangian interpolating polynomials, 
which is associated with the Legendre–Gauss–Lobatto points. To apply the model for various problems, 
several numerical treatments are implemented. The well-balanced property is maintained by approximating 
the bottom topography with a set of piecewise continuous functions. For the flooding and drying problems, a 
wetting and drying treatment of the thin-layer technique is employed. This method can preserve the mass 
conservation and introduce a much smaller computational cost, as elements remain unchanged and maintain 
their connectivity throughout the computation. As high-order methods may generate spurious oscillations near 
discontinuities and lead to numerical instability, a slope limiting approach is also applied. For the flooding and 
drying problems, a wetting and drying treatment of the thin-layer technique is employed. Moreover, a 
positivity-preserving operator from (Xing et al., 2010) is adopted to ensure the positivity of water depth.  

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

5110 ©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print)



  
          

  

 

The paper is arranged as follows. In Section 2, we introduce the discretization of SWE with the nodal DG 
method, and some numerical treatments of the SWE are also represented. In Section 3, the results of the 
oscillatory flow in a parabolic bowl problem are investigated to address the accuracy and computational 
efficiency of the quadrilateral model. Finally, we give some conclusions in Section 4. 
 
2 NUMERICAL DISCRETIZATION OF THE SHALLOW WATER EQUATIONS 

 
2.1 Shallow water equations 
 The conservative form of the two-dimensional SWE is written in terms of the water depth h and the flow 
discharge (qx, qy) = (hu, hv), given by 
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where U, F(U) = [E(U), G(U)]T, and S(U) are the vectors of conservative variables, flux terms, and source 
terms, respectively, and are expressed by 
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The source term S(U) accounts for the friction and bottom topography effects and is defined as 
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where the friction terms Sfx and Sfy are estimated by the Manning law and n is the Manning number. 
 
2.2 Discretization of SWE with nodal DG method 
 The first step of implementing the nodal DG method is to subdivide the computation domain into Ne non-
overlapping elements Ωe. Then we multiply Eq. [1] by a test function ϕ={ϕi}∈Vp(Ωe) and integrate by parts to 
obtain the weak formulation in each element Ωe: 
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where the basis and test functions belong to the same finite dimensional space Vp(Ωe), which consists of 
Lagrangian polynomials in element Ωe with degree at most p, and allows discontinuities at element 
boundaries. Uh(x,t) = ∑Ui(t)ϕi(x) is the local approximation of conservative variables U with the nodal basis 
functions, where the main aspect of the DG framework is to seek these time-varying coefficients. To allow 
information transfer between elements, the dual-valued flux terms in the boundary integral are replaced by a 
numerical flux function F*. In this study, the HLL flux is adopted, which is widely used in SWE modeling and 
can provide less dissipative result than Lax-Friedrich flux for small degree p (Cockburn and Shu, 2001; 
Eskisson and Sherwin, 2004). 
 To enhance the computational efficiency with nodal DG method, a quadrature-free approach is adopted. 
A set of interpolation points is first determined on the reference quadrilateral Ωst = [–1,1]2, while any arbitrary 
quadrilateral element can be projected to the standard element with an appropriate mapping xe(ξ): Ωst(ξ)→
Ωe(x) (Wirasaet et al., 2010). In this study, we use the Legendre–Gauss–Lobatto (LGL) interpolation points 
that include the boundary points on ∂Ωst. Then some discrete matrices are required 
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where M and Me is the mass matrix of volume and boundary integrals, N is the stiffness matrix, and D is the 
derivative matrix. Numerically, each element of these matrices can be calculated with the Gauss-quadrature 
rule of integration. J and Je are diagonal matrices, where each element of the diagonal is the Jacobian at the 
nodal interpolation points. Now the discretization of Eq. [2] can be written as 
 

     1 1 * ( )i
i e e i i iJ J M M S

t
 

      

U

D F F n U

 

 
 [6]

It is important to point out that in the RHS of Eq. [6], the terms (-D⋅F) and (M-1Me(F*⋅n)) are calculated by the 
matrix–vector multiplication, while the Jacobian factor (J-1Je) and the source term S(U) are multiplied and 
added to each element of the result. Comparing the computational cost with triangular elements, Wirasaet et 
al. (2010) analyzed the computation time of nodal DG method on quadrilaterals and triangles for convection 
problem numerically, and gave the conclusion that the use of quadrilateral elements is less expensive when 
the degree p is not greater than 3. Consequently, we will restrict the degree p to 1 in this study. 

A semi-discrete weak formulation of Eq. [6] is then obtained and can be written as an ordinary differential 
equation (ODE) as follows: 
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The resulting ODE is solved by the explicit four-order five-stage Runge-Kutta method, which can be defined in 
the general form 
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[8]

where αil and βil are the coefficients of the Runge-Kutta method and Un and Un+1 are the results at different 
times t and t + ∆t. Some numerical treatments are applied in each RK stage to eliminate numerical oscillation 
and enforce the stability of the scheme, which will be described in the next section. 
 
2.3 Numerical treatment of SWE method 

To preserve the equilibrium states, the well-balancing (C-property) is one of the most important properties 
for SWE models, which can be provided by a large number of numerical schemes. In this model, the well-
balanced DG model is guaranteed by adopting a continuous piecewise polynomial function zh to approximate 
the bottom topography z(x), which is the same as Bollermann et al. (2013). For discontinuous topography, one 
may also use the hydrostatic reconstruction method (Audusse et al., 2004) by adding a correction term to the 
Eq. [6]. 

Another important property of SWE model is the ability of handling the wetting and drying process. An 
efficient wetting and drying treatment from Bunya et al. (2009) is adopted. This treatment involves a threshold 
of water depth h0 for detecting the dry region. For the elements Ωe with 0eh h ( eh  is the averaged depth), the 
gravity terms is canceled by setting g = 0, and the numerical fluxes F* between dry elements are also 
neglected to preserve the conservation of water mass and momentum. 

Some numerical treatments are also needed to preserve the numerical stability for DG schemes. One is 

related with the calculation of the flux Jacobian ghu . When the water depth is sufficient small, a spurious 

large flow rate many be derived by (qx/h, qy/h) with a small truncation error in (qx, qy). This will lead to a very 
small time step from the Courant-Friedrichs-Lewy (CFL) criterion. In this study, we simply ignore the flow rate 
when the averaged water depth is less than h0. For high order schemes, a stabilization technique is required 
to remove the numerical oscillations. A modified Barth-Jespersen slope limiter (Barth and Jespersen, 1989) 
for arbitrary quadrilateral elements is used in this model, which is only used at the local extrema and is 
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efficient to ensure the stability. A positivity-preserving limiter is also used to preserve the positivity of water 
depth. The operator is first proposed by Xing, et al. (2010) and defined as 

 

 *
min

,   min 1, e
i i e e

e i

h

h h
 

 
      

U U U U  
 

 [9] 
 

 

where the notation Ui denotes the conservative variables at each node, and   , ,, ,
T

e e x e y eh q qU   is the averaged 

variables of each element. It is clear that the modified depth hi* is positive at all nodes, and the conservation 
of mass and momentum is also ensured in each cell. For dry cells with a negative mean water depth 0eh  , we 

simply set =0eh . 
 
3 NUMERICAL TEST 
 
3.1 Oscillatory flow in a parabolic bowl 
 A periodic oscillatory flow problem is used to analyze the accuracy and performance of the new 
quadrilateral mesh model. The computation domain is a [-4000, 4000] m × [-4000, 4000] m rectangle with a 
parabolic bottom topography z(x) = ar2, where r2 = x2 + y2 and a is a positive constant of 1.6×10-7 m-1. The 
bottom is smooth with Manning number n = 0. The analytical solutions of the water depth and momentum are 
given by 
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 [10] 

 

 
where the parameter ω2 = 8ga, X and Y are set to 1 m-1 and -0.41884 m-1 respectively. The period of the 
solution is T = 2π/ω = 1773.13 s. The initial condition of Uh is defined by Eq. [10] at t = 0 s and the model runs 
for two periods and ends at t = 2T. The CFL number is set to 0.3 and the time step is determined by the 
following formula  
 

 

 max

min
e

e

i

t CFL



    
 

 [11] 
 

 
where λmax is the maximum eigenvalue of the Jacobian of the flux term and δe is the elemental length, which 
can be calculated by A  for quadrilaterals and 2A  for triangles, with A being the area of element. To reduce 
the accuracy reduction from the slope limiter, the Barth-Jespersen limiter only acts on the conservative 
variables Uh = (h, qx, qy) in wet regions, while other numerical operators, such as the wet/dry treatment and 
positivity-preserving operator, are applied to the whole domain. The threshold of h0 is set to 10-4 m and the 
gravitation constant g is 9.81 m2/s.  

In Figure 1, the numerical results on a coarse uniform quadrilateral mesh with 80×80 elements are 
presented. At the first half period, the water runs-up onto the parabolic bowl and submerges a large area of 
the domain as shown in Figure 1 (a), (b) and (c). Then the water retreats and finally stops at its initial position 
in the second half period as illustrated in Figure 1 (d), (e) and (f). In Figure 2, the numerical results on section 
x = 0 m are compared with exact solutions at different times, where both the water depth and flux are nicely 
approximated by the numerical results. Small wiggles are observed in the solution h during the retreating 
process, which are mainly caused by the wetting and drying treatments from the wet/dry interface and can be 
rapidly reduced with finer meshes. 
 To assess the convergence rate of DG methods, we calculate the norm error on several uniform 
quadrilateral meshes of Ne×Ne elements (Ne = 80, 100, 120, 140, 160 and 180 respectively), where Ne is the 
number of elements on each edge. The norm error of L2 is computed on each mesh at t = T, and the 
convergence rate is given by 
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(a)                                                                                 (b) 

 
(c)                                                                                 (d) 

 
(e)                                                                                 (f) 

Figure 1. The results of water depth at different times: (a) t = T/6, (b) t = T/3, (c) t = T/2, (d) t = 2T/3, (e) t = 
5T/6, and (f) t = T. 
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(a) 

 
(b) 

 
Figure 2. Comparisons of the numerical and exact solutions of h (left), qx (middle) and qy (right) on section x = 

0 m at different times: (a). t = 2T/5, (b) t = 3T/5, and (c) t = 4T/5. 
 

 log( / )

log( / )
c f

c f

e e
r

 
  

 
 [11] 

 
 
where the ec, ef and δc, δf are the norm error and element length of the coarse and fine meshes, respectively. 
The errors and convergence rates of variables h, qx and qy are shown in Table 1, where the fitted 
convergence rates are obtained by the least square methods. The convergence rates for water depth h and 
flux qx and qy in the L2 norm are close to 1.25, 1.00 and 1.00, respectively. In this test, the discontinuities 
appear in the solutions at the wet/dry interface, and it is well known that the slope limiter will degenerate the 
accuracy of the schemes to first order, so it is unexpected that all of these rates are equal to or greater than 
the optimal degree. Nonetheless, the convergence rates are within an acceptable range and the quadrilateral 
mesh-based model is able to offer accurate solutions with very fine mesh resolution. Similar results can be 
found in Bunya et al. (2009). 
 

Table 1. Errors and convergence rates of the oscillatory flow problem at t = T. 

Ne δe 
h qx qy 

L2(h) r L2(qx) r L2(qy) r 
80 98.7 4.54E-03 \ 9.93E-03 \ 9.93E-03 \ 

100 80.0 3.38E-03 1.32 7.62E-03 1.19 7.62E-03 1.19 
120 66.7 2.59E-03 1.45 6.23E-03 1.10 6.23E-03 1.10 
140 57.1 2.18E-03 1.11 5.50E-03 0.82 5.50E-03 0.82 
160 50.0 1.86E-03 1.19 4.90E-03 0.85 4.90E-03 0.85 
180 44.4 1.66E-03 0.99 4.34E-03 1.04 4.34E-03 1.04 
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Figure 3. Comparisons of the numerical error L2(h) at t = 2T on triangle and quadrilateral meshes for different 

DOFs. 
 

 
Figure 4. Comparisons of the computation time used on triangle and quadrilateral meshes for different DOFs. 
 
 To demonstrate the high computational efficiency of the quadrilateral-based model, we compared the 
error and the computational time with the triangle mesh-based model in the same framework. For the uniform 
triangle mesh, the elements are created by dividing the square elements along the diagonal (Ne = 80, 100, 
120 and 140), while the time step ∆t are the same with corresponding quadrilateral mesh. The results of 
numerical error L2(h) and the computation time used for different Ne are shown in table 2. Figure 3 illustrates 
the logarithmic plot of the error L2(h) and the degrees of freedoms (DOFs) for different meshes at the end of 
the simulation. It is obvious that the logarithms of the errors are proportional to the logarithms of DOFs for 
both of triangle and quadrilateral meshes. For the same number of Ne, the L2(h) errors on triangle meshes are 
corresponding with that on quadrilateral meshes, however, the triangle meshes contains more DOFs which 
are 1.5 times more than that on quadrilateral meshes. Therefore, with the same number of DOFs, the errors of 
quadrilateral meshes are only 1.11 to 1.72 times smaller than the error of triangle meshes. Similarly, in Figure 
4, the logarithmic of the computing time used and the DOFs are also proportional as expected. This probably 
because that the DOFs has a close relationship with the computational cost of matrix-vector multiplication. As 
the quadrilateral meshes contain a smaller DOFs, the computation with quadrilateral meshes are 
approximately 1.21 to 1.62 times more efficient than using triangle meshes when the DOFs is held fixed. 
Overall, combing the information in Figure 3 and 4, we can give the conclusion that with the same number of 
DOFs, the quadrilateral-based DG model can provide more accurate results with less computation time. It is 
important to point out that this conclusion applies for low order degree p = 1, while for high order p it still 
needs further investigation. 
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Table 2. Error and computation time for triangles and quadrilaterals on different mesh resolutions at t = T. 

Ne 
Tri Quad 

DOFs L2(h) r time(s) DOFs L2(h) r time(s) 
80 38400 4.61E-03 \ 102.93 25600 4.53E-03 \ 39.548 

100 60000 3.34E-03 1.45 178.42 40000 3.38E-03 1.32 72.072 
120 86400 2.46E-03 1.68 335.11 57600 2.59E-03 1.45 114.95 
140 117600 2.01E-03 1.29 511.33 78400 2.18E-03 1.11 200.70 

 
4 CONCLUSIONS 
 In this study, we proposed the nodal DG methods on quadrilateral meshes for the two-dimensional SWE. 
The motivation is to enhance the computational efficiency of the nodal DG method for SWE model. In 
addition, some numerical treatments are also introduced, and the model is able to preserve stable in handling 
the complex wetting and drying problem. To verify the new model, the oscillatory flow in the parabolic bowl 
problem is simulated. The numerical solutions indicate that the model can give robust and accurate results, 
and the expected order of convergence rate is achieved. Small wiggles on water depth h are produced at the 
wet/dry interface in the coarse meshes, but these errors are rapidly reduced with finer meshes. Moreover, to 
demonstrate the performance of accuracy and efficiency, the quadrilateral model is compared with the 
triangular model in the same framework. The solutions show that the quadrilateral meshes require less 
computational time (1.21 to 1.62 time shorter) while providing a relatively small numerical error (1.11 to 1.72 
times smaller) when the DOFs is held fixed. From this point of view, it is more efficient to use the DG SWE 
model on quadrilateral meshes. It is necessary to point out that this study restricts to low order with p = 1, 
there still needs further investigation for high order degrees.  
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ABSTRACT 
 
In this paper, three-dimensional simulation of hydrodynamic phenomena (wave refraction, diffraction, shoaling 
and breaking) are performed by a finite-volume non-hydrostatic and shock-capturing three-dimensional model. 
The Navier-Stokes equations are solved on a time dependent coordinate system. The solution procedure of 
the equations of motion is based on a high-order WENO reconstruction procedure and a third order accurate 
Runge-Kutta (SSPRK) fractional-step method and adopts a pressure corrector formulation in order to obtain a 
divergence-free velocity field at each stage. The proposed model is validated against several benchmark test 
cases. 

 
Keywords: 3D model; non-hydrostatic flows; shock-capturing scheme; time dependent coordinate system; pressure-

correction method. 
 

1 INTRODUCTION  
 The main problem to deal with in the study of nearshore hydrodynamics is the wave transformation 
simulation from deep water to coastal regions. An efficient and well-tested tool for the simulation of the above-
mentioned phenomena is given by Boussinesq-type wave models with improved non-linearity and dispersion 
characteristics (Gallerano et al., 2014; 2016). 
 A different approach is based on the direct solution of the Navier-Stokes equations by using a tracking 
technique in order to follow the free surface elevation (maker-and-cell (MAC) and volume-of-fluid (VOF)). In 
many 3D models, Cartesian coordinates are used and thus the free surface crosses the computational cell 
arbitrarily. This leads to the difficulty of applying the pressure boundary condition on the free surface and may 
affect the accuracy of the velocity computation. An alternative approach can be obtained by assuming that the 
free surface is always placed at the upper computational boundary. Thus, the pressure boundary condition 
can be fixed over it. In order to solve the Navier-Stokes equations, the pressure is decomposed in a 
hydrostatic and a non-hydrostatic component (Stelling and Zijlema, 2003; Yuan and Wu, 2004a; 2004b; 
Young and Wu, 2010). Stelling and Zijlema (2003) proposed a model in which the pressure is located at the 
cell faces rather than the cell centres (known as the Keller-box method) in order to replace staggered grids in 
the vertical direction. In this model, the pressure boundary condition at the free surface is exactly assigned to 
zero without any approximation. Many authors simulate the fluid dynamic fields on unstructured grids (Oka 
and Ishihara, 2009; Cioffi and Gallerano, 2006). 
 The numerical schemes that are adopted for the solution of the equations of motion ensure convergence 
to the correct weak solutions if these equations are expressed in an integral form and in terms of conserved 
variables (Toro, 2009). In order to track the actual location of the wave breaking without using any criterion, 
the above-mentioned numerical schemes should be of shock-capturing type. 
 In this paper, the equations of motion are expressed in a new integral form and in terms of conserved 
variables. In order to express the equations in a time-dependent coordinate system, the time-varying 
coordinates of the physical domain are mapped to a uniform transformed space. A third order Runge-Kutta 
(SSPRK) fractional-step method is involved in the solution procedure. A divergence free velocity field is 
obtained at each stage by a pressure corrector formulation. A shock-capturing numerical procedure, a high 
order WENO reconstruction technique (Gallerano and Cannata, 2011) and an approximate HLL Riemann 
solver (Harten et al., 1983) are on the basis of the discretization of the equations of motion in the predictor 
phase. The solution of the Poisson equation in the corrector phase is based on an alternate Zebra four-colour 
Gauss-Siedel relaxation method with a V-cycle multigrid strategy (Trottenberg et al., 2001). 
 
2 EQUATIONS OF MOTION 
 We define the water depth as ܪሺݔଵ, ,ଶݔ ሻݐ ൌ ݄ሺݔଵ, ,ଶݔ ሻݐ ൅ ,ଵݔሺߟ ,ଶݔ  ߟ ሻ where ݄ is the still water depth andݐ
is the free surface elevation. In order to accurately represent the bottom and free surface geometry and to 
correctly assign on them the pressure and the kinematic conditions, we consider a transformation from the 
Cartesian coordinates ሺݔଵ, ,ଶݔ ,ଷݔ ,ଵߦሻ to the transformed coordinates ሺݐ ,ଶߦ ,ଷߦ ߬ሻ 
ଵߦ  ൌ ଶߦ    ,   ଵݔ ൌ ଷߦ   ,   ଶݔ ൌ

௫యା௛

ு
   ,   ߬ ൌ  [1] ,ݐ
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The time dependent coordinate system moves with velocity given by ݒ௠ ൌ ቄ0, 0,
డ௫య

డఛ
ቅ. This coordinate 

transformation basically maps the varying vertical coordinates in the physical domain to a uniform transformed 
space where ߦଷ spans from 0 to 1. 
 Let Ԧ݃ሺ௟ሻ ൌ Ԧݔ߲ ⁄݈ߦ߲  and Ԧ݃ሺ௟ሻ ൌ ݈ߦ߲ ⁄Ԧݔ߲  be respectively the covariant and the contravariant base vectors. Let 

us also define ݃ሺ௟௠ሻ, ݃ሺ௟௠ሻ and ඥ݃ respectively as the metric tensor, its inverse and the Jacobian of the 
transformation. For the considered coordinate transformation (Eq. [1]), the Jacobian is equal to the water 
depth, ඥ݃ ൌ  be the volume and surface elements expressed in the physical ∗ܣ߂ ,∗ܸ߂ ሻ andݐሺܣ߂ ,ሻݐሺܸ߂ Let .ܪ

space and transformed space, respectively, as ܸ߂ሺݐሻ ൌ ଷݔ߂ଶݔ߂ଵݔ߂ ൌ ඥ݃ߦ߂ଵߦ߂ଶߦ߂ଷ, ܣ߂ሺݐሻ ൌ ఉݔ߂ఈݔ߂ ൌ

ඥ݃ߦ߂ఈߦ߂ఉ and ܸ߂∗ ൌ ∗ܣ߂ ,ଷߦ߂ଶߦ߂ଵߦ߂ ൌ ,ߙ ఉ (in whichߦ߂ఈߦ߂ ߚ ൌ 1,2,3 are cyclic). Let us define ݑ௟ (݈ ൌ 1, 3) as 
the fluid velocity in the Cartesian reference coordinate system. ܪ and ݑ௟ are the primitive variables while ܪ 
and ݑܪ௟ are the conserved variables. We define the cell averaged value of the primitive and conserved 
variables in the transformed space, respectively, as 
 
ഥܪ  ൌ

ଵ

∆௏∗
׬ ∗ଷ∆௏ߦଶ݀ߦଵ݀ߦ݀ܪ ത௟ݑ   ,  ൌ

ଵ

∆௏∗
׬ ∗ଷ∆௏ߦଶ݀ߦଵ݀ߦ௟݀ݑ ௟തതതതതݑܪ ,  ൌ

ଵ

∆௏∗
׬ ௟ݑܪ ∗ଷ∆௏ߦଶ݀ߦଵ݀ߦ݀  [2] 

 
 We introduce a restrictive condition on the control volume ∆ܸሺݐሻ: in the following, ∆ܸሺݐሻ must be 
considered as a volume element defined by surface elements bounded by curves lying on the coordinate 
lines. By this condition, the integral form of the momentum equation in the transformed coordinates, for an 
incompressible fluid, can be written as 
 
 డு௨೗തതതതതത

డఛ
ൌ െ

ଵ

∆௏∗
∑ ቄ׬ ௠ݑ௟ሺݑܪൣ െ ௠ሻ݃௠ݒ

ሺఈሻ ൅ ଶܪܩ
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௟݃
ሺఈሻ൧݀ߦఉ݀ߦఊ∆஺∗ഀష ቅ  
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ሺఈሻ݀ߦఉ݀ߦఊ∆஺∗ഀశ
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െ
ଵ

∆௏∗
ଵ

ఘ
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డ௤

డకೖ ௟݃
ሺ௞ሻܪ	ߦ݀ଵ݀ߦଶ݀ߦଷ∆௏∗ ൅

ଵ
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[3] 

 
 Here the indexes ߚ ,ߙ and ߛ are cyclic. ݃௠

ሺఈሻ indicates the ݉-th component (in the Cartesian reference 
system) of the contravariant base vector Ԧ݃ሺఈሻ. ∆ܣ∗ఈା and ∆ܣ∗ఈି indicate the contour surfaces of the volume 
element on which ߦఈ is constant and which are respectively located at the larger and at the smaller value of 
 is the dynamic pressure and ௟ܶ௠ is the stress tensor. From ݍ	,is the fluid density ߩ ,is the gravity constant ܩ .ఈߦ
Eq. [3] it can be noticed that the conserved variables are advanced in time within a transformed space which 
is not time varying. The time variation of the geometric components is expressed by the time variation of the 
metric terms. 

Let ∆ܣ௫௬∗ ൌ  ଶ be the horizontal surface element in the transformed space. By taking into account theߦ∆ଵߦ∆
surface and bottom kinematics boundary conditions and by considering that the water depth ܪ does not 
depend on the ߦଷ coordinate (ߦଷ spanning from 0 to 1) and that ∆ܸ∗ is not time-varying, we obtain the 
following equation 

 
 ௗ

ௗఛ
׬ ∗ଷ∆௏ߦଶ݀ߦଵ݀ߦ݀	ܪ ൌ ׬

డு

డఛ
ଶ∆஺ೣ೤ߦଵ݀ߦ݀

∗   [4] 

 
in which the right-hand side can also be written as 
 
׬ 

డு

డఛ
ଶ∆஺ೣ೤ߦଵ݀ߦ݀

∗ ൌ ∗௫௬ܣ∆
డுഥ

డఛ
  [5] 

 
 By using Eqs. [4] and [5] and by applying the bottom and surface kinematic boundary conditions, the 
integral form of the continuity equation in the transformed coordinates can be written as 
 
 డுഥ

డఛ
൅

ଵ

∆஺ೣ೤
∗ ׬ ∑ ቂ׬ ఉకഀశߦఈ݀ݑܪ െ ׬ ఉకഀషߦఈ݀ݑܪ ቃ ଷଶߦ݀

ఈୀଵ
ଵ
଴ ൌ 0  [6] 

 
in which ߦఈା and ߦఈି indicate the contour lines of the surface element ∆ܣ∗ on which ߦఈ is constant and which 
are located at the larger and at the smaller value of ߦఈ respectively. Equation [6] represents the governing 
equation for the free surface movements. Equations [3] and [6] represent the three-dimensional equations of 
motion as a function of the ݑܪ௟തതതതത and ܪഥ conserved variables in the time dependent coordinate system 

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print) 5119



          
 

 

 

ሺߦଵ, ,ଶߦ ,ଷߦ ߬ሻ. The numerical integration of these equations makes it possible to simulate the fully dispersive 
wave phenomena. 
 
3 NUMERICAL SCHEME 
 Eqs. [3] and [6] are solved by using a combined finite-difference/finite-volume scheme. A grid staggering 
strategy is used (Stelling and Zijlema, 2003) where the fluid velocities are located at the centres of the 
computational cells and the fluid pressure is defined in correspondence of the horizontal faces of the cells. 
The time discretization of Eqs. [3] and [6] is done by means of a third-order accurate Strong Stability-
Preserving Runge-Kutta method (Gottlieb et al., 2009). At each time level, a divergence-free velocity field is 
obtained by using a pressure-correction method. The proposed numerical procedure can be summarized as 
follows. 

(1) At the face centre of each computational cell, two point values of the conserved variables are 
reconstructed by means of a high-order upwind WENO scheme (Gallerano et al., 2012). 

(2) These two values are used as initial data of a local approximate HLL Riemann solver that gives the 
updated volume flux on the cell face. 

(3) The volume fluxes, obtained at the cell faces by step (2), are used to calculate a non-hydrostatic 
(predictor) velocity field that is not, in general, divergence-free. 

(4) The divergence of the predictor velocity field is used as the right-hand side of a Poisson pressure 
equation that is numerically solved by using a four-colour Zebra line Gauss-Seidel alternate method 
and a multigrid strategy. 

(5) The pressure field, as calculated at step (4), is used to correct the predictor field in order to obtain a 
divergence-free velocity field. 

(6) The non-hydrostatic resulting velocity field is used to advance in time the total water depth by Eq. 
[6]. 

 
4 RESULTS  
 
4.1 Spatial evolution of waves propagating over a longshore bar. 
 The experimental test proposed by Beji and Batties (1993) is numerically reproduced in order to verify the 
ability of the proposed model to simulate the spatial evolution of waves propagating over a longshore bar. 
 The experimental test is carried out in a flume of length 37.7	݉ where a submerged trapezoidal bar is 
present, consisting of a slope of 1: 20 and a 2݉ horizontal crest, 0.3	݉ above the bottom of the flume, followed 
by a 1: 10 slope. The still water level in the deep region is 0.4	݉ and reduced to 0.1݉ above the horizontal bar 
part. Periodic incident non-breaking waves with frequency 0.5	Hz and wave height 2	ܿ݉ were experimentally 
generated. 
 The numerical simulation reproduces the experimental flume (Figure 1) and the wave conditions. Waves 
are generated on the left boundary and a plane sloped beach of 1: 25 is placed on the opposite boundary in 
order to dissipate the wave motion. The time discretization is 0.001ݏ and the spatial discretization is ݔ߂ ൌ
0.01	݉. Three vertical layers are used for the simulation of the dispersive and non-linear phenomena related 
to this test. 

 
Figure 1. Spatial evolution of waves propagating over a longshore bar. Bottom topography and location of the 

experimental measurement stations: ݔሺܽሻ ൌ ሺܾሻݔ ;݉	10.8 ൌ ሺܿሻݔ ;݉	12.8 ൌ ሺ݀ሻݔ ;13.8݉ ൌ ሺ݁ሻݔ ;݉	14.8 ൌ
ሺ݂ሻݔ ;݉	16 ൌ 17.6	݉. 

 
 Figures 2 (a) – (f) show the comparison between the numerical and experimental results of the temporal 
and spatial evolution of the waves at the measurement stations, indicated in Figure 1. From Figure 2 (a) it can 
be seen that on the offshore slope of the bar the waves hold sinusoidal. From Figures 2 (b) and (c) it can be 
noted the steepening of the incident waves above the horizontal bar part, due to the wave-structure 
interaction. Figures 2 (d), (e) and (f) show that the waves lose their vertical symmetry while propagating on the 
bar slope and toward the shoreline. 
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 The overall numerical results are in very good agreement with the experimental data. The proposed 
model well represents the spatial evolution of the incident waves propagating over the longshore bar due to 
the wave-structure interaction by using only three vertical layers. 

(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 2. Spatial evolution of waves propagating over a longshore bar. Free surface elevation at the 
measurement stations: (a) ݔሺܽሻ ൌ 10.8	݉; (b) ݔሺܾሻ ൌ 12.8	݉; (c) ݔሺܿሻ ൌ 13.8	݉; (d) ݔሺ݀ሻ ൌ 14.8	݉; (e) ݔሺ݁ሻ ൌ

16	݉; (f) ݔሺ݂ሻ ൌ 17.6	݉. Solid line: numerical results. Circles: experimental data. 
 
4.2 Wave propagation over an elliptic shoal. 
 The experimental test extracted from the “Report W. 154-VIII” of the Delft Hydraulics Laboratory and 
proposed by Berkhoff et al. (1982) is numerically reproduced in order to verify the ability of the proposed 
model to simulate the physical processes of wave propagation and wave deformation (refraction and 
diffraction) due to an elliptic shoal. 

The experimental bottom physical domain is reproduced and shown in Figure 3. The bottom topography 
is characterized by a slope of 1: 50 above which an elliptic shoal is present. By defining the Cartesian 
coordinates (ݕ ,ݔ) and (ݕ ,’ݔ’) respectively related by a rotation of െ20°, the bottom and elliptic obstacle 
equations are given by 
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ܪ  ൌ ′ݕ   ݂݅   0.45 ൑ െ5.484  [7] 
 
ܪ  ൌ ݔܽ݉ ൫0.1; 0.45 െ 0.02ሺ5.484 ൅ ′ݕ   ݂݅   ሻ൯′ݕ ൒ െ5.484 [8] 
 ቀ

௫′
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ቁ
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൅ ቀ
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ଷ
ቁ
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ൌ 1  [9] 
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௫′

ହ
ቁ
ଶ
െ ቀ

௬′

ଷ.଻ହ
ቁ
ଶ
  [10] 

 
where ܪ is the water depth and ݀ the elliptic obstacle thickness. It has to be noticed that the minimum depth is 
10	ܿ݉: only non-breaking waves are considered. 
 The wave train has an amplitude of 0.0464	݉ and a period of 1ݏ. The numerical simulation spatial and 
time discretization steps are ∆ݔ ൌ ݕ∆ ൌ 0.05	݉ and ∆ݐ ൌ  Waves are numerically generated on the .ݏ	0.005
eastern boundary of the computational domain while, on the western boundary, a sponge zone is placed in 
order to absorb the wave motion energy. Reflective conditions are set for the lateral boundaries. Lastly, four 
vertical layers are used in the vertical direction. 
 

 
Figure 3. Wave propagation over an elliptic shoal. Bottom topography and section traces: (a) ݔ ൌ 0	݉; (b) 

ݔ ൌ 2	݉; (c) ݕ ൌ 3	݉ and (d) ݕ ൌ 9	݉. 
 

Figures 4 (a) – (d) show the comparison between the numerical results and the measured data from 
Berkhoff et al. (1982) of the wave heights at sections ݔ ൌ ݔ ,݉	0 ൌ ݕ ,݉	2 ൌ 3	݉ and ݕ ൌ 9	݉ indicated in 
Figure 3. The computed wave height is obtained as the free surface elevation maximum and minimum 
difference, over a time interval in which the wave form is permanent. From Figure 4 (a) it can be seen an 
increase of the wave height, due to the shoaling phenomenon induced by the top of the obstacle. From Figure 
4 (b) it can be seen a decrease of the wave height, due to the diffraction phenomenon induced by the obstacle 
boundaries. From Figures 4 (c) and (d) it can be noticed a loss of symmetry and periodicity of the wave behind 
the elliptic obstacle due to diffraction and refraction phenomena. 

From these results, it is possible to deduce how the bottom elliptic obstacle influences and modifies the 
wave motion by means of diffraction, shoaling and refraction phenomena. The presence of such phenomena 
can also be deduced by observing Figure 5, where an instantaneous free-surface wave field is shown. 
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(a)  (b)  

(c)  (d)  
 
Figure 4. Wave propagation over an elliptic shoal. Wave height along sections: (a) ݔ ൌ 0	݉; (b) ݔ ൌ 2	݉; (c) 
ݕ ൌ 3	݉ and (d) ݕ ൌ 9	݉. Solid line: numerical results. Circles: experimental data. 
 

 
Figure 5. Wave propagation over an elliptic shoal. Instantaneous free surface elevation. 
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5 CONCLUSIONS 
A model for non-hydrostatic free-surface flows based on an integral formulation of the Navier-Stokes 

equations in a time-dependent system of coordinates is proposed. The equations of motion are numerically 
integrated by a combined finite-difference/finite-volume scheme. The time integration is performed by a third 
order strong-stability preserving Runge-Kutta method. A fractional-step, pressure-correction method is used at 
each stage in order to produce a diverge-free non-hydrostatic velocity field. The intermediate hydrostatic 
velocity field is calculated by a shock-capturing upwind WENO scheme and an HLL Riemann solver. The 
pressure Poisson equation used in the corrector step is integrated by a four-colour Zebra line Gauss-Siedel 
alternate method and by adopting a multigrid strategy. 
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ABSTRACT 
 
The characteristic Galerkin finite element method for the discrete Boltzmann equation is developed for the 
numerical simulation of depth-integrated shallow water equations. Due to the inherent geometric flexibility of 
the unstructured mesh in finite element method, the mesh clustering near large gradients and the numerical 
treatments of complex geometries become possible. It is believed that the characteristic Galerkin procedure 
with appropriate boundary conditions results in accurate solutions with little numerical diffusion. The bend flow 
is simulated and the numerical results are in good agreement with previous experimental results. 

 
Keywords: Lattice Boltzmann method; shallow water equations; characteristic Galerkin method; unstructured mesh; 

bend flow.  
 
 
1 INTRODUCTION 

The lattice Boltzmann method (hereafter, LBM) simulates microscopic collision and streaming of fluid 
particles and evaluates the macroscopic velocity, pressure, etc. from the computed particle distribution. Since 
LBM uses a regular lattice, it seems difficult to apply the LBM to the complex flow domain. As a solution to this 
issue, some methods applicable to irregular lattice have been proposed recent years. These can be classified 
into two groups. The first category is the discretization-based LBM with conventional discretization method 
(e.g., FDM, FVM, FEM, etc.). The second is the interpolation-supplemented LBM (Tateishi and Kashiyama, 
2004). The latter is very effective in applications. However, in the interpolation-based schemes, an accurate 
interpolation scheme is required for the interpolation of the particle distribution function in the streaming step. 
Therefore, the discretization-based scheme has become a popular choice.  

The LBM known to be a discrete computational method based upon the lattice gas automata, which is a 
simplified, fictitious molecular model. This consists of three basic tasks: lattice Boltzmann equation, lattice 
pattern and local equilibrium distribution function. The former two are standard, which is the same for fluid 
flows. The latter determines what flow equations are solved by the LBM model, which is often derived for 
certain flow equations such as the equations for incompressible Navier-Stokes equations or shallow water 
equations. 

In order to solve the LBE in complex geometries while preserving the advantages of the conventional 
LBM such as data locality and little numerical diffusion, we employed the strategy of Lee and Lin (2001), 
which adopted the characteristic Galerkin finite element method (Zienkiewicz and Codina, 1995; Lin et al., 
2005) for solving the discrete Boltzmann equation. In this study, the application of LBM to shallow water 
equations is briefly introduced and the flow in the bend is simulated. 

 
2 LBM EQUATIONS AND FINITE ELEMENT FORMULATION 

The equations for particle distribution are briefly described. The boundary conditions and turbulence 
modeling are also discussed. 
 
2.1 LBM equations 

The kinetic equation for the distribution function (e.g., distribution of passive scalar), fα(xi,t) can be written 
as: 
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 [1] 

 
where α = 0 ~ 8 for D2Q9 model (Figure 1). The left-hand side terms represent the streaming process, where 
the distribution function streams (advects) along the lattice link with velocity eα (=Δx/Δt). The right-hand side 
term, Ωα represents the rate of change of distribution function in the collision process. BGK approximation for 
the collision operator can be approximated as, 
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where λ represents a relaxation time toward the equilibrium distribution (fα

eq) and Fi is the external force given 
by 
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where zb is the bottom elevation from the reference level and wi  is the bottom friction (usually represented by 

Manning or Chezy equation) in xi direction. This relaxation term, λ is related to the diffusion coefficient on the 
macroscopic scale. The equilibrium distribution function for the shallow water equation is given by (Zhou, 2004) 
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Figure 1. All possible velocities for the 9-bit lattice BGK model on square lattice. 

 
The macroscopic variables, depth and depth-averaged velocity, are recovered by  
 

    
a

a tfth ,, xx  [5] 

 

    


 fe
th

tu i,

1
,

x
x  [6] 

   
2.2 Finite element formulations 

In this study, we followed the approaches suggested by Lee and Lin (2001) for Navier-Stokes equations. 
The predictor-corrector method is expressed as follows: 
(1) Predictor step 
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where t   is the (non-dimensional) relaxation time. 

(2) Corrector step 
 

  eqneqn ffff  
ˆ1ˆ ,1   [8] 
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The applications of characteristic-Galerkin formulation of the two-steps lead to the following formulations. First, 
The predictor step is  
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where Γe denotes the boundary of each element and ns is the s-direction component of the unit outward 
normal vector on Γe of the element. For the above spatial discretization, Dα and Qα are needed for 
discretization along the characteristics and contribute to the stabilization of Eq. [9] (Lee and Lin, 2001). The 
fourth term on the right-hand side of Eq. [9] is the surface integral, which is needed on the domain boundary 
since they cancel out in the interior of the domain Ω. Lee and Lin (2001) cautioned that, with none of these 
terms, the scheme is likely to be unstable. Secondly, the corrector step is  
 

   eqneqn
  ffff ˆ1ˆ ,1   [17] 

 
2.3 Turbulence modeling 

Modeling of turbulence in LBM is executed by redefining the new (non-dimensional) relaxation time, τt. 
Zhou (2004) proposed the following form 
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where Cs is the Smagorinsky constant and ij  is defined as 
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The new relaxation time, τt, replaces τ in Eq. [9] and [17].  
 
2.4 Boundary conditions 

For the LBM shallow water equation model in this study, neither Dirichlet nor natural boundary conditions 
seem to appropriately work since usually boundary conditions are given for macroscopic variables, such as 
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fluid velocities, pressure, or their gradients, but never for particle distribution functions, fα. In the solution 
procedure described by Eq. [9] and [17], only the streaming step requires boundary conditions since there is 
no spatial derivative of fa in the two collision steps (Lee and Lin, 2001). The streaming step given by Eq. [7] is 
hyperbolic and therefore, boundary conditions must be provided if eα·n < 0 where n is a unit outward normal 
vector at the local boundary surface. On the other hand, if eα·n > 0, boundary conditions are not necessary.  
The preferred choice is the bounce-back rule of the nonequilibrium distribution proposed by He et al. (1998), 
who suggested  
 

     0 eqeq ffff   [20] 

  

where eβ = - eα. In this study, the approach of Mei and Shyy (1998) was used, which regards 1nf  at the 

domain boundary as part of the solution and imposes macroscopic physical boundary conditions through eqf
. The free-slip boundary condition also worked reasonably well with this approach. 

 
3 APPLICATION TO BEND FLOW 

The case of 180o bend curved channel flow (Run No. 8 of Rozovskii (1957)) is selected for the validation 
of the developed scheme. A flow in a strongly curved channel is believed to represent one of the most 
complex and challenging flows encountered in a natural meandering river. As shown in Figure 2, the channel 
width is 0.8 m; the internal radius is 0.4 m and there is no bed slope in the channel. The flow conditions are: 
(1) flow discharge is 0.0123 m3/s (2) the entrance depth is 0.063 m; and (3) the channel bed is rough with 
Chezy coefficient, Cz = 32 m1/2/s. At the upstream boundary, the gradient of depth in flow direction is set to 
zero; velocity u is accordingly adjusted to retain the constant discharge and v = 0. As the downstream 
boundary condition, the depth is specified as 0.05 m. A steady-state solution was reached after 2000 
iterations with ∆t= 0.005 s. The Smagorinsky constant, Cs, is set to 0.25.  

 

 
Figure 2. Schematic description of 180o curved channel and finite element mesh. 

 
Figure 3 shows the surface plot of simulations with no-slip boundary condition for the side wall and free-

slip boundary condition for the wall. Figure 4 is the comparison of streamwise velocities at 9 sections. As 
expected the simulation with free-slip boundary condition gives much better agreement with the experimental 
measurements of Rozovskii (1957). A little-bit-poor agreement at section of S = 8.0 m manifests the difficulty 
of curved channel flow due to the secondary flow. 
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(a) No-slip condition on the wall boundary 

 

 
(b) Free-slip condition on the wall boundary 

Figure 3. Plot of free surface in the 180o bend channel. 
 

 
Figure 4. Comparisons of the tangential velocities (S is the distance between each cross-section  

and the entrance along the channel central line). 
 

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print) 5129



  
          

 

 

4 CONCLUSIONS 
The characteristic Galerkin finite element method has been successfully applied to solve the discrete 

Boltzmann equation for shallow water equations. Due to the inherent geometrical flexibility of the finite 
element method, flows in complex geometries can be easily simulated. In addition, the use of unstructured 
meshes increases the numerical accuracy while reducing the computational cost. In order to circumvent the 
stability limit arising from the relaxation term, the predictor-corrector method of Lee and Lin (2001) is 
employed. The curved channel flow is tested with the developed model and favorable results were obtained, 
confirming the applicability of the proposed method.  

Less satisfactory agreement at one section is believed to be the secondary motion at the bend and VAM-
like model (Song et al., 2012) can be considered as a future study. The noted strength of the LBM is that, by 
defining the equilibrium function, it can represent other equations with ease. The developed model can be 
combined with contaminant spreading or sediment transport. 
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ABSTRACT  
 
A robust parameter set (ROPS) selection method for a hydrodynamic flow model is developed by combining 
Pareto optimums obtained by outcomes of multi-site calibration problem based on the observations of multi-
sites with the minimax regret approach (MRA). The multi-site calibration problem which is a multi-objective 
problem is solved by using an aggregation approach which aggregates the weighted criteria related to 
different sites into one measure, and then performs a large number of individual optimization runs with 
different weight combinations. Roughness parameter structure which can describe the variation of Manning’s 
n with discharges and sub-reaches was developed and the related coefficients are optimized as model 
parameters by minimizing the sum of the squares of the weighted residuals between the computed and 
observed water levels at two gauging stations. Different combinations of weights on the observations at two 
sites are considered for the aggregation approach to solve multi-objective function, and the corresponding 
optimized parameter sets (Pareto optimums) are assumed as the ROPS candidates. One flood event is 
selected for calibration and another one is chosen for validation, where the two events differ significantly in 
their rainfall distributions. In the application of MRA, which is a decision criterion, the Pareto solutions are 
ranked based on the obtained regrets related to each Pareto solution, and the top-rated one due to the lowest 
aggregated regrets of both calibration and validation is determined as the only ROPS. It is found that the 
determination of variable roughness and the corresponding standardized RMSEs at the two gauging stations 
vary considerably depending on the combinations of weights on the two sites. This method can provide the 
robust parameter set for the multi-site calibration problems in hydrologic and hydraulic models.  
 
Keywords: Minimax regret approach; pareto optimum; robust parameter set selection; unsteady flow model; variable 

roughness coefficients. 
 
 
1 INTRODUCTION   

Flooding is one of the most severe disasters that can affect human lives and society, and the frequency 
and magnitude of severe floods have probably increased due to climate change. Numerous numerical models 
for flood simulation have been developed and successfully applied to many water resources engineering, 
flood risk assessment and planning of flood mitigation measures. Apart from the numerical scheme of flood 
routing models, the hydraulic roughness as a model parameter is one of the most important factors that 
influences the estimation accuracy of water levels and discharges in channels. Manning’s roughness 
coefficient is a key parameter used in flood routing models based on the one-dimensional Saint-Venant 
equations, where it represents the flow resistance from different sources. It considers all aspects of 
resistance, including the skin friction related to the grain size of bed materials, bed form roughness, and 
channel resistance due to river bends and gradual changes in cross-sections. Transitions in the flow level and 
discharge also lead to variations in Manning’s n (Coon, 1998; Rouse, 1965; Chow, 1959). Therefore, the 
temporal and spatial changes in Manning’s n make its determination difficult. Many studies have identified 
Manning’s roughness coefficients (Ishii, 2000; Ramesh et al, 2000; Atanov et al., 1999); however, most of 
these studies have only dealt with a lumped parameter model in which Manning’s n is regarded as temporally 
and/or spatially constant.  

Model parameters are typically determined by using either manual or automatic calibration. In contrast to 
hydrological modelling, where many sophisticated approaches of automatic calibration dominate these days, 
the common procedure for hydrodynamic models is a manual calibration to fit the observations (Dung et al., 
2011). Because of the high computational demands of hydrodynamic model, particularly for two-dimensional 
flood inundation models, only a few studies have dealt with automatic calibration of hydrodynamic models.  

Observations should be used for model calibration and validation to optimize Manning’s roughness coefficient 
in a hydrodynamic flow model. Calibration of a distributed hydrodynamic model using multi-site data can derive 
better-defined model parameter estimates by constraining the calibration process (Hunter et al., 2005; Horritt, 2000; 
Seibert et al., 2000), which can be considered as a multi-site calibration using a multi-objective optimization 
framework. This calibration problem can be defined by several objective functions that measure errors at different 
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sites. Calibration with multiple observations by applying multiple objective functions or multiple performance criteria 
has been widely employed in hydrologic models (Saeidifarzad et al., 2014; Wang, 2012; Li et al., 2010; Khu et al., 
2008; Khu and Madsen, 2005) but rarely in hydraulic models.  

 McCabe et al. (2005) noted that multi-objective calibration allows a set of Pareto optimal solutions, or 
Pareto approximate solutions, whereas a single objective model calibration only identifies a set of model 
parameters according to a single observation set. If two or more objective functions are included in the 
calibration, the number of Pareto optimal or near Pareto optimal parameter sets will increase exponentially. 
Therefore, this calibration problem can be changed into a decision-making problem that can select a set of 
preferred model parameters among a number of Pareto sets (Khu and Madsen, 2005).  

The purpose of this study is to develop a ROPS selection method for a hydrodynamic flow model by 
combining a multi-objective calibration based on multi-site measurements with MRA. A crude approximation of 
the Pareto solution set was obtained by aggregating the weighted criteria related to different sites into one 
measure which is used in the optimization, and then by performing a number of individual optimization runs 
with 11 different combinations of weights on two sites in terms of one decimal place. A ROPS which is a 
compromise solution as it can provide a good overall performance was selected from the obtained Pareto 
solution set by using MRA. The minimax regret approach (MRA), which is a useful decision-making technique 
under complete uncertainty (Kim et al., 2015a; Kim and Chung, 2014), was used to select the ROPS for 
variable roughness of a hydrodynamic flow model by ranking all optimized Pareto optimal sets as shown in 
Kim et al. (2015b). The selected parameter set can be regarded as robust because the weights assigned to 
the multiple objectives are not subjective as many previous studies (Dung et al., 2011) but objective. It is 
demonstrated in this study that the MRA can be an analytical and objective approach to select the only proper 
parameter set among optimized solutions obtained with all available weight combinations. There has been no 
literature testing the MRA as a decision criterion for multi-site calibration problems in hydrology and 
hydraulics. The regrets from calibration and validation were aggregated to determine the only ROPS. 
Roughness parameter structure which can describe the variation of Manning’s n with discharge and sub-
reaches was proposed for a hydrodynamic flow model and the related coefficients were calibrated as model 
parameters. 
 
2 CASE STUDY AND DATA 
 
2.1 Study River 

The river reached in this study, which is the 69 km between Paldang Dam and Jeonryu gauging station, 
is the main stream of the Han River in South Korea (Figure 1). The Han River, which is 494 km long and >1 
km wide, is the fourth longest river on the Korean Peninsula. It is formed by the confluence of two major 
branches, namely the South and North Han Rivers, which come together at Yangpyeong in Gyeonggi 
Province. The Han River flows through Seoul, which is the capital of South Korea, and finally flows into the 
Yellow Sea. The water levels were measured at the Paldang Bridge, Banpo Bridge, Hangang Bridge, Heangju 
Bridge, and Jeonryu gauging stations (Figure 3). Two submerged weirs in the channel, namely Jamsil and 
Singok submerged weirs (Figure 1), are partly gated structures. The gates of movable weirs are fully opened 
during flood periods, thus two different flows occur at the fixed weir and the movable weir. 

 

 
Figure 1. Study area: Han River. 

 
2.2 Data preparation 

Two flood events were selected from the monsoon season (June-August), as shown in Table 1. The first 
and second flood events were used for calibration and validation, respectively. The rainfall causing the first 
event showed spatially homogeneous distribution as the total precipitation at the two stations was similar, 
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whereas for the second event, the total rainfall in the upstream region of the river was similar to the average of 
the first event but it decreased by half in the downstream region of the river. The peak discharge at Paldang 
Dam in the first flood event was over 1.5 times that in the second flood event. Songjeong station is near the 
Jungrang Stream junction, and Gimpo station is near the Jeonryu gauging station (Figure 3). 
 

Table 1. Descriptions of two events used in this study. 

Event 
Period 

(mm/dd/yyyy 
hh:mm) 

Total precipitation (mm) Peak time 
(mm/dd/yyyy 

hh:mm) 

Peak 
runoff 
 Paldang Songjeong Gimpo (ܛ/૜ܕ)

1 
07/24/2008 10:00 

to 07/27/2008 04:00 
124 101 111 

07/25/2008 
00:10 

16,146 

2 
07/12/2004 10:00  

 to 07/15/2004 00:00 
100 80 47 

07/13/2008 
10:00 

9,909 

 
The collected data include the discharges at Paldang Dam as an upstream boundary condition of the 

simulation model, discharges of tributary inflow, observed stages at two gauging stations (Paldang Bridge, 
and Banpo Bridge) for model calibration, observed data at Junryu gauging station as the downstream 
boundary for the model, and topographic data. 
 
3 NUMERICAL FLOOD MODELLING 
 
3.1 Hydrodynamic model 

 A looped-network unsteady flow model was developed and applied for the Han River. The governing 
equations comprise of link and node equations. Either fluvial or weir-type flow could occur at links, and these 
are described by different equations. The equations for fluvial links are as follows:  
 

డ஺

డ௧
൅

డொ

డ௫
ൌ 0                                                                                           [1] 
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డ௧
൅

డ

డ௫
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஺
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൅ ܣ݃

ொ|ொ|

௄మ
ൌ 0                                                      [2] 

 
where x and t are variables in space and time, respectively; y(x, t) is the water surface elevation; Q(x, t) is the 
discharge; A(x, y) is the cross-sectional area of water; K(x, y) is the conveyance; ߙ is an energy correction 
factor, which is assumed to be unity; and g is the acceleration due to gravity. The conveyance is described as 
 

ܭ ൌ
ଵ

௡
 ଶ/ଷ                                                                                         [3]ܴܣ

 
where R is the hydraulic radius and n is Manning’s roughness coefficient.  

The governing equations for weir-type links and nodes can be found in Kim and Jun (2004). 
The Preissmann’s four-point implicit scheme was used to discretize the partial differential equations [1] 

and [2] (e.g., Cunge et al., 1980; Liggett and Cunge, 1975). The discretized equations combined with 
equations of weir-type links and nodes comprise of the nonlinear system that can be solved by the Newton-
Raphson method using the looped double-sweep algorithm. Details of the algorithm were provided by Holly et 
al. (1990).   

The distributed hydrodynamic model in this study includes 156 computational points with respectively 
possible different roughness parameter. To perform parameter optimization, it is required to reduce the 
number of adjustable parameters. This is achieved by developing variable parameter structure in this study. 

In Eq. [3], Manning’s n can be generally expressed as (Yen, 2002; Coon, 1998; Chow, 1959) 
 

݊ ൌ ݊൫ݔ, ܳሺݔ,  ሻ൯                                                                              [4]ݐ
 
where Manning’s n at each computational point not only changes with the sub-reach to which it belongs, but 
also with the discharge at that point. In this study, a power function which includes two parameters (Eq. [5]) 
was adopted as a functional relationship between Manning’s roughness coefficient and the resulting discharge 
(Figure 2). The whole reach is divided into two sub-reaches which are upstream and downstream of the 
Wangsook stream junction. This is because the upstream reach is a natural river in which the cross sections 
are highly irregular, whereas the downstream reach is a channelized river in which the cross sections are 
relatively regular. Therefore, two different power functions were considered in each sub-reach and a total of 
four parameters (ߙଵ, ߙଶ, ߚଵ, and ߚଶ) should be optimized for the whole reach.  
 

݊௜ ൌ ݅    ,௜ܳఉ೔ߙ ൌ 1,… ,  [5]                                                                   ܫ
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where ߙ௜ and ߚ௜ are the coefficients of a power function in ith sub-reach and i is the total number of sub-
reaches which is equal to two in this study. 
 

 
Figure 2. Relationship between Manning’s n and discharge (power function). 

 
3.2 Model set up 

The model consisted of 10 nodes (one at either end of the river reach, an upstream/downstream pair at 
each of the two submerged weirs, and one at each of the four tributary-inflow junction points) and 11 links 
(Figure 3). As stated earlier, the submerged weirs at Jamsil and Singok were composed of a fixed and a 
movable weir; the gates of the movable weir were fully opened during flood periods. Therefore, channel and 
weir-type flows occurred separately on either side. To simulate these two flows, a fluvial and a weir-type link 
were used for the channel and weir-type flows, respectively, in the model. These two links will connect the 
upstream and downstream nodes of the submerged weir by forming a loop (Figure 3).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Schematic representation of the modeled river reach. 
  

4 CALIBRATION FRAMEWORK 
 
4.1 Procedure of ROPS selection 

 In this study, the aggregation approach was applied to solve the multi-site objective problem by 
aggregating performance indices from individual sites into one objective function. The main difficulty of using 
aggregation approaches is the need to assign reasonable weight to each objective function (Dung et al., 
2011). The weights for different sites affect directly the ROPS selection and hence should be determined 
carefully. Shinma and Reis (2014) indicated that the equal-weighted approach is both simple and reasonable 
in most cases, but is not appropriate for multi-event and multi-site optimization problems. In this study, we 
used the MRA to select the ROPS by considering all combinations of available weights in terms of one 
decimal place. A flowchart illustrating the proposed methodology is presented in Figure 4. 

The main steps of the methodology are as follows: 
i. Formulating the multi-site optimization problem for the hydrodynamic flow model, 
ii. Optimizing multi-site objective functions for calibration with available combinations of weights at two 

sites in terms of one decimal place, 
iii. Computing regrets based on the performance measures of different Pareto optimums for two events 

of calibration and validation, and 
iv. Deciding the ROPS based on the aggregated regrets of calibration and validation. 
Before performing the MRA, the performance values should be linearly normalized so that the effect of 

different magnitudes of water stages of two events at two sites can be removed. The linear normalization 
technique applied in this study uses the maximum and minimum feasible values to ensure that the 
performance values range from 0 to 1. 

࢔ ൌ ࢼࡽࢻ
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Figure 4. Flowchart illustrating the proposed methodology. 

 
4.2 Multi-site objective function 

The general multi-site objective function can be expressed as  
 

minሼܨଵሺીሻ,	ܨଶሺીሻ,… , ી					௡ሺીሻሽܨ ∈ દ	                                              [6]                                 
 

where ܨ௜ሺીሻ, ݅ ൌ 1, 2, … , ݊ are the n number of different objective functions that needs to simultaneously be 
minimized with respect to the parameter vector ી, and દ is the feasible parameter space. 
The objective of model calibration aims to obtain optimal roughness parameters (ܖ) by minimizing the sum of 
squares for the weighted residuals between the computed and observed water levels at three sites, thus Eq. 
[6] can be specified as  
 

Minimize Sሺܖሻ ൌ ∑ ∑ ቀݓ௞ሺܪ௧
௞ െ ݄௧

௞ሻቁ
ଶ

்
௧ୀଵ

ଶ
௞ୀଵ                                   [7] 

 

where 
k
tH and 

k
th  are the observed and computed water levels, respectively, at the kth station at time level 

t; the superscripts, k = 1, and 2 denote Paldang Bridge, and Banpo Bridge, respectively; n is a parameter 
vector that represents a set of four coefficients of two power functions; and ݓ௞ is the weight for the kth site 
ଵݓ) ൅ ଶݓ ൌ 1). In total, 11 combinations of weights in terms of one decimal place (1.0, and 0.0; 0.9, and 0.1; … 
0.0, and 1.0) were considered in this study. 

The Gauss-Marquardt-Levenberg optimization algorithm was used to find the optimal model parameters. 
This algorithm can converge toward the optimal solution more efficiently and faster by combining the 
advantages of the inverse Hessian method and the steepest descent method (Liu et al., 2005). 
 
4.3 Minimax regret approach 

Many studies have noted that the MRA is a reliable criterion that can be used to make reasonable 
decisions when the likelihoods of possible outcomes a not clearly known and it is not possible to use the 
expected utility criteria or the classical expected value (Chung and Kim, 2014; Loulou and Kanudia, 1999).  

For a cost minimization problem, the regret R(ી) is the difference between the cost with the parameter set 
ી and the least cost at the kth site, as follows: 
 

ܴሺીሻ ൌ ሺીሻܥ െ minܥሺીሻ					ી ∈ દ                                                    [8] 
 
where ܥሺીሻ is the performance values when the parameter set ી is considered. ܥሺીሻ was described by the 
normalized RMSE in this study. 

The minimax regret is  
 

MMR ൌ minሼmaxܴሺીሻሽ                                                                  [9] 
 

The corresponding parameter set for the minimax regret is  
 

ી∗ ∈ Argminሼmaxܴሺીሻሽ                                                                  [10] 
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5 RESULTS AND DISCUSSION 
 
5.1 Calibration and validation of ROPS candidates 

Multi-site objective functions with 11 combinations of weights were optimized for calibration. Four coefficients 
of two power functions that describe the functional relationship between Manning’s n and discharge were optimally 
estimated for both the upstream and the downstream reaches of the Wangsook stream junction. Figure 5 shows 
the relationships determined by considering 11 combinations of weights at two sites. The results showed that 
Manning’s n decreases as discharge increases in both reaches in most cases, and the Manning’s n in the 
upstream reach is greater than that in the downstream reach when the values of discharge is larger than 2000 
m3/s.  
 

           
(a)                                                                                          (b) 

Figure 5. Estimated relationships between Manning’s n and discharge: 
(a) upstream reach; (b) downstream reach. 

 

 
(a)                                                                             (b) 

Figure 6. Calibrated hydrographs (lines) using 11 optimized parameter sets: 
(a) Paldang Bridge; (b) Banpo Bridge. 

 
For the calibration, Figure 6 shows good overall agreement between the observations (black circles) and 

the hydrographs computed with the 11 weight combinations. According to the RMSEs in Figure 7(a), most 
values at Banpo Bridge were greater than that at the other site. The estimated coefficients of power functions 
from the calibration were used for the second flood event as a validation procedure.  

The Figure 8 shows that the overall difference between observed (black circles) and computed water levels 
produced from validation is greater than that from calibration, especially for the Banpo Bridge. The RMSEs at 
Banpo Bridge produced during validation were obviously greater than those at the other site, and the standardized 
RMSEs at both two sites varied significantly with different combinations of the weights on two sites (Figure 9). The 
standardized sums of squares of the weighted residuals for multi-site calibration and validation are shown in Figure 
10. 
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(a)                                                                                     (b) 

Figure 7. RMSEs for two sites with 11 parameter sets.  
(a) scatter plot of RMSEs; (b) standardized RMSEs. 

 

   
(a)                                                                             (b) 

Figure 8. Validated hydrographs (lines) with 11 optimized parameter sets:  
(a) Paldang Bridge; (b) Banpo Bridge. 

 

       
(a)                                                                      (b) 

Figure 9. RMSEs for two sites with 11 parameter sets. 
(a) scatter plot of RMSEs; (b) standardized RMSEs. 
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Figure 10. Standardized sum of squares of weighted residuals from calibration and validation. 

 
The rankings of the combinations of weights are summarized in Tables 2 and 3. Table 2 lists the results 

obtained from the calibration, and Table 3 presents those from the validation. The best combinations of 
weights based on the MRA were (0.4, 0.6) and (0.7, 0.3) for the first and second flood events, respectively. 
 

Table 2. Robust ranking based on the minimax regret approach (MRA) for the calibration.  
Combinations of weights Calibration 
 ૛ Regret Rank࢝ ૚࢝
0.4 0.6 0.086 1 
0.2 0.8 0.153 2 
0.5 0.5 0.204 3 
0.6 0.4 0.289 4 
0.1 0.9 0.304 5 
0.3 0.7 0.318 6 
0.0 1.0 0.359 7 
0.7 0.3 0.517 8 
0.8 0.2 0.591 9 
0.9 0.1 0.957 10 
1.0 0.0 1.000 11 

 
Table 3. Robust ranking based on the MRA for the validation. 

Combinations of weights Validation 
 ૛ Regret Rank࢝ ૚࢝
0.7 0.3 0.812 1 
0.6 0.4 0.812 2 
0.8 0.2 0.875 3 
0.2 0.8 0.893 4 
0.4 0.6 0.894 5 
0.5 0.5 0.928 6 
0.0 1.0 0.932 7 
0.1 0.9 0.960 8 
0.9 0.1 0.981 9 
0.3 0.7 1.000 10 
1.0 0.0 1.000 11 

 
5.2 Selection of ROPS 

In this study, both the calibration and the validation results were used to select the ROPS using MRA. As 
listed in Tables 2 and 3, most of the weight combinations and their rankings obtained from the calibration were 
different from those produced by the validation. Table 4 lists the rank of parameter sets when the two regrets 
obtained from calibration and validation were aggregated into a composite index by averaging. It can be found 
from the table that the parameter set with weights on two sites, (0.4, 0.6) which ranked the first in the 
calibration results was also the first in the final ranking, and that with weights on two sites, (0.7, 0.3) which 
was the first in the validation ranked the 8th in the final ranking. 
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Table 4. Robust ranking based on the aggregated regrets obtained from the calibration and validation.  
Combinations of weights Calibration Validation Aggregated 

regret 
Final 
rank ࢝૚ ࢝૛ Regret Rank Regret Rank 

0.4 0.6 0.086 1 0.894 5 0.490 1 
0.2 0.8 0.153 2 0.893 4 0.523 2 
0.6 0.4 0.289 4 0.812 2 0.551 3 
0.5 0.5 0.204 3 0.928 6 0.566 4 
0.1 0.9 0.304 5 0.960 8 0.632 5 
0.0 1.0 0.359 7 0.932 7 0.646 6 
0.3 0.7 0.318 6 1.000 10 0.659 7 
0.7 0.3 0.517 8 0.812 1 0.664 8 
0.8 0.2 0.591 9 0.875 3 0.733 9 
0.9 0.1 0.957 10 0.981 9 0.969 10 
1.0 0.0 1.000 11 1.000 11 1.000 11 

 
6 CONCLUSIONS 

This study developed a ROPS selection framework by solving the multiple objective problem for the 
determination of a reasonable parameter set of a hydrodynamic flow model based on multi-sites using the 
MRA. The candidate ROPS were derived by optimizing the model parameters using all available 11 
combinations of weights for two gauging stations. Two different flood events were selected for calibration and 
validation, respectively. Based on these ROPS candidates, the most suitable parameter set among 11 Pareto 
optimums was determined by using the MRA. 

This study showed that when the regrets obtained from the calibration and validation were aggregated by 
weight-averaging to select ROPS, relatively smaller weight was given to the first site as shown by the upper 
ranking of weight combinations for the two sites (Table 4). The best parameter set was related to the 
combination of weights (0.4, 0.6) that had the greater weight for the second site. The optimized model 
parameters and the corresponding sum of squares of the weighted residuals for the model generally varied 
with the combinations of weights for multiple sites. This study showed that ROPS selection based on the MRA 
can determine the most suitable ROPS from among many optimized sets by considering multiple sites. 
Therefore, the users of automatic calibration approaches do not have to face the task of selecting a preferred 
and suitable solution from the numerous Pareto-optimal sets. 
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ABSTRACT 
 
High Performance Computing (HPC) hardware is moving towards computation of accelerator devices such as 
GPU and Xeon Phi. These devices now enable multi-million cell hydraulic models to be solved in reasonable 
times, and have brought supercomputer performance to the office desktop. TUFLOW’s new HPC 2D Shallow 
Water Equation (SWE) solver was developed with the GPU accelerator target in mind, and utilises an explicit 
finite volume scheme that parallelises effectively across thousands of computational cores. Along with 
conservation of volume, momentum, and energy, mesh size convergence is an important feature of any 
numerical solution scheme, and it is important for the modeller to understand how the model results change 
with mesh resolution. The modeller can then choose the mesh size for production runs, knowing the likely 
magnitude of the residual discrepancy between the production results and fully converged results. The new 
TUFLOW scheme is detailed, and two examples for which experimental results are available to benchmark 
the numerical results are presented. The first example is steady state sub-critical shallow water flow around a 
90° bend, Malone et al. (2008). The second example is the United Kingdom Environment Agency (UK EA) 
Test 6a, UK Environment Agency (2013), in which a reservoir breaches into a confined channel with an 
obstruction. This model is highly transient with supercritical flow and moving hydraulic shocks. The 
convergence of the model results against mesh resolution and time-step is examined for these test cases, 
using 1st and 2nd order spatial interpolation options. Comparisons of model results against experimental data 
are made, and conclusions regarding “best practice” mesh resolution are drawn. 
 
Keywords: Shallow water equations; finite volume schemes; high performance computing; model 

convergence; TUFLOW. 
 
 
1 INTRODUCTION 
 Nearly every real world application for flood modelling involves estimating head losses where flows 
change direction. The ability of any numerical scheme to accurately compute such head losses will depend on 
the mathematics of the scheme, the resolution with which the geometry is modelled, and the size of the time 
step used for transient solutions. 
 In an ideal world, the key results from any model should converge asymptotically to limiting values as the 
model resolution is increased. However, this can be more difficult to realise in practice than at first might be 
thought. For one, increasing model resolution may admit new flow details to the solution that are real and 
expected, while for another numerical rounding error may accumulate and lead to artefact divergence in the 
results at very fine mesh resolutions. This may deter a modeller from performing mesh-size sensitivity studies, 
but there are at least three strong arguments in favour of such investigations. 
 Firstly, grossly changing results with mesh size may well indicate a flawed solution scheme, incorrect 
computer code, or poorly defined model boundary conditions (such as point sources or sinks). Mesh-size 
sensitivity studies should be performed if for no other reason than to build confidence in both model and 
software. 
 Secondly, mesh-size sensitivity studies may also aid in the calibration process in that some discrepancy 
between model results and calibration data may perhaps be understood and hence tolerated if it can be 
shown that the results are converging towards the calibration data as the mesh size is refined. 
 Thirdly, the mesh-size sensitivity study also provides a lower bound for the uncertainty in key model 
results, and should perhaps be added to the variations identified by other sensitivity studies such as variation 
in bed-friction coefficients and/or inflows. 
 
2 TUFLOW HPC FINITE VOLUME SCHEME 
 The new TUFLOW HPC solver (currently branded TUFLOW GPU) evolves the 2D Shallow Water 
Equations (SWE) on a uniform Cartesian grid. Cell averaged depth and velocity (i.e. volume and momentum) 
were tracked with a finite volume scheme, and propagated forward in time using the classic fourth order 
Runge-Kutta method. Figure 1 illustrates the notation adopted in which the cell averaged quantities for the cell 

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print) 5141



  
          

 
in question are denoted with the subscript cc, the neighbouring cells are denoted n1 through to n4, the cell 
wall volume fluxes Φ1 to Φ4. The cell width and height are ∆x and ∆y respectively. 
 

 
Figure 1. Finite volume notation. 

 
 The time derivative of the water depth was computed by considering conservation of volume, as 
expressed in Equation 1 in which A is the cell area, h is the water depth, and SQ is any volume source or sink 
connected to the cell. The cell area A is considered to be time invariant. It may be modified by a ‘storage 
reduction factor’ if water displacing structures were present within the cell. 
 

 
஺డ௛

డ௧
ൌ ∑Φ௜ ൅ ܵொ [1] 

 
 The volume fluxes across each face are computed using the face normal velocities, the water depth at 
the face, and the relevant face width. The latter may also be modified by a ‘flow reduction factor’ where 
impervious structures impede the flow. The water depth at a face was taken to be the water depth of the cell 
that the water was flowing from (known in computational fluid dynamics as ‘upwinding’). In the case of h1 for 
example, if (ݑ௖௖ ൅  ௡ଵ,) > 0, then hn1 is used, otherwise hcc is used. In the case that the bed elevation of theݑ	
downwind cell was higher than the bed elevation of the upwind cell, the water depth at the face was reduced 
by the difference in bed elevations, and limited to be non-negative. 
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 In a similar manner the time derivatives of the u and v (x-dir and y-dir respectively) velocities are also 
computed by considering conservation of momentum in each direction, as shown in Equation 3 with the 
viscosity terms omitted. Here	ݑ௜, is the face interpolated u velocities, n is the Manning’s bed friction coefficient, 
z the bed elevation, g gravity. The right most forcing term of Equation 3, forcing due to gradients in surface 
elevation, requires care in its discretised implementation as it can become a net source of energy within the 
model if incorrectly posed. 
 

 
஺డሺ௛௨ሻ

డ௧
ൌ ∑Φ௜ݑ௜ െ ݃ܣ

௡మ൫௨మା௩మ൯
భ
మ௨

௛
భ
య

െ ݄݃ܣ
డሺ௭ା௛ሻ

డ௫
 [3] 

 
 Equation 3 requires very small time-steps to solve for u when the water depth is shallow. A more efficient 
implementation can be achieved by separating out the bed friction term in Equation 3, expressing it in terms of 
the end-of-time-step u’ and v’, and solving for the end-of-time-step u’ and v’ implicitly using the assumption 
that the other forcing terms remain constant. By doing this, Equation 3 can be rearranged to Equation 4 (and 
similarly for v): 
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 u’ and v’ are solved iteratively together, and the effective derivatives for u and v calculated and passed to 
the explicit integrator. 
 Turbulent viscosity was modelled using the Smagorinsky formulation as shown in Equation 5, and the 
terms shown in Equation 6 added to the right side of Equation 3 (and similarly incorporated into Equation 4). 
Note that the turbulent viscosity ்ߥ is calculated separately at the four faces. 
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 The interpolation of u and v to the cell faces can be performed either using a first order technique in 
which the cell average values from the upwind cell are used, or by using a second order method. The difficulty 
with using a pure second order method such as ݑଵ ൌ ሺݑ௡ଵ ൅  ௖௖ሻ/2, is that it is not total variation diminishingݑ
(TVD) and is known to be unstable. Here a hybrid technique had been adopted. To illustrate this method, 
consider the left face of the cell with positive flux Φଵ. The cell average u velocity is ݑ௖௖, the upwind cell 
average u is ݑ௡ଵ, and now also consider the cell on the opposite (far) side of the upwind cell with an average u 
velocity of u11. The hybrid technique looks at the form of the solution for u over these three cells. In the limit 
that the solution shows no curvature, pure second order interpolation was used, and in the limit that the 
solution shows reversal (i.e. ݑ௡ଵis outside the range spanned by u11 and ݑ௖௖), then the first order scheme (up-
winding) is adopted. For solutions in-between, the method blends smoothly from one to the other. 
Mathematically, for the case illustrated, the blend is expressed in Equation 7. In the event that flux Φଵ is 
negative, ݑ௡ଶ, ,௖௖ݑ ,ଵଵݑ ௡ଵ are used in place ofݑ ,௡ଵݑ  .௖௖ respectivelyݑ
 
௜ݑ  ൌ ሺ1 െ ௡ଵݑሻߦ ൅ ߦ  ௖௖ݑߦ ൌ ሺ1ݔ2 െ ݔ  ሻݔ ൌ
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 0 ൑ ݔ ൑ 1 [7] 

 
 The computed derivatives for h, u and v, are local in time and may be computed for each cell 
independently of other cells. This approach lends itself to massively parallel computation where threads were 
mapped to cells and each executes the same code and the order of execution is unimportant. There were a 
handful of data that were globally reduced (either summed or the maximum located) at each time step but 
efficient techniques exist for performing these reductions in a massively parallel environment. 
 The time evolution of the water depth and velocities was computed explicitly with the classic Runge-Kutta 
fourth order method. Adaptive time step size was typically employed to maintain stability of the model. The 
three time step control criteria were courant number ௨ܰ, celerity number ௖ܰ, and diffusion number ௗܰ as 
shown in Equation 8. The time step was adjusted to maintain these at or below 1.0, 1.6, and 0.3 respectively. 
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2 ABRUPT ANGLED BEND TEST CASE 
 The TUFLOW GPU solver had been extensively tested with a wide variety of models, but there are only a 
few available with test data available for benchmarking. The first benchmark test considered was that of sub-
critical flow around an abrupt 90 degree angled bend, as performed by Malone et. al. (2008). 
 Their test setup consisted of two flat bottomed flumes connected at an angle, with the downstream depth 
and volume flow rate able to be varied. Malone and colleagues measured the head loss attributable to the 
bend over a range of flow rates, water depths, bend angles, and performed a detailed analysis. The flow 
regimes (downstream water depth vs volume flow rate) tested are shown in Figure 2 along with a linear fit for 
head loss as a function of velocity head. The slope of this linear fit is the head loss factor, which represents 
the ratio of total energy loss around the bend to upstream kinetic energy. For the 90 degree abrupt bend, a 
loss factor of 1.23 was obtained. 
 For the majority of the tests performed, the water depths within the flumes were comparable to the flume 
width. This casts some doubt on the validity of modelling these tests with the SWE, but as will be shown the 
results agree surprisingly well. 
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(a) Flow regimes (b) Head losses 
Figure 2. Abrupt angled bend test, reproduced from Malone et. al. (2008). 

 
 The first numerical study considers flow around the 90 degree abrupt bend, with flow rate of 0.008m3/s, 
and downstream water level of 0.123m. The flume width was 0.15m, and the upstream and downstream arms 
were 18m widths long. The bed friction (Manning’s) coefficient was set to 0.01, and both arms had a downhill 
gradient of 0.2%. The numerical solution was also expected to depend on mesh size, viscosity coefficients, 
spatial interpolation scheme, and time step. Figure 3 illustrates the flow solutions at the bend for mesh sizes 
ranging from 2, 4, 8 and 16 cells across the flume width resulting in mesh cell sizes less than 1 cm. Flow 
enters from left and exits from the bottom. 
 The solution was found to reach a steady state by approximately 60s from model start. Each flume arm 
was divided into tiles of one flume width square, and the total head in each tile was spatially and temporally 
averaged over 1s intervals from 60s to 120s. The total head in each tile was plotted as a function of distance 
from the bend, and a linear fit was derived. The head loss attributable to the bend was calculated by 
extrapolating the upstream and downstream linear that fits to the bend, and computing the difference. 
 Figure 4 plots the loss factor attributable to the bend as a function of mesh size, for the 1st and 2nd order 
spatial schemes and for constant viscosity values (i.e. c of Equation 5, in units m2/s) and for proportional 
viscosity values (i.e. m of Equation 5, dimensionless). From these results it can be seen that both 1st and 2nd 
order schemes tend to over-predict the head loss, and that both 1st and 2nd order schemes with non-zero 
constant viscosity appear to asymptote to limiting values with decreasing cell size. 
 For both 1st and 2nd order schemes, the zero-viscosity case does not show convergence. A possible 
reason for this becomes apparent when a zero viscosity flow solution for a finer mesh size (in this case N 
Width = 16) was visualised, as shown in Figure 5, in which vigorous eddy structures were apparent in the flow. 
The introduction of some models of viscosity suppresses the intensity of these structures. Interestingly for 
both 1st and 2nd order schemes, non-convergence was apparent for the various proportional viscosity values 
trialled. A possible explanation for this behaviour is that, as the proportional viscosity term is also proportional 
to cell area, reducing cell size leading to zero viscosity in its limit (provided the velocity gradients within large 
eddies are determined by the flume width, not the mesh size). 
 In summary, it appears that excellent solutions were obtained with both 1st and 2nd order spatial schemes 
with just enough constant viscosity to prevent eddy structures in the flow. Reasonable solutions are found 
utilising 3 or more cells across the flume width. 

 

 
(a) N Width = 2 (b) N Width = 4 (c) N Width = 8 (d) N Width = 16 

Figure 3. Flow solutions at various mesh resolutions. 
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(a) 1st Order, various constant viscosity values (b) 1st Order, various proportional viscosity values 

(c) 2nd Order, various constant viscosity values (d) 2nd Order, various proportional viscosity values 
Figure 4. TUFLOW HPC Abrupt 90deg bend head loss factor. 

 

 
Figure 5. Eddy structures, 2nd order, zero viscosity. 

 
 Solutions for other flow rates and downstream depths were also investigated. Figure 6 shows the flow 
regimes considered and the resulting head losses using the 2nd order spatial scheme and a constant viscosity 
of 0.002m2/s. 
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(a) Flow regimes (b) Head loss 
Figure 6. Abrupt 90 degree angled bend. 

 
 Malone et. al. (2008) also considered other bend angles: 30, 45, 58, and 76 degrees. Again using the 
same flow parameters as were used for the mesh size study, bend angles from 0 to 90 degrees in 2 degree 
increments were studied. The results are presented in Figure 7 using a constant viscosity of 0.002m2/s, and 8 
cells across the flume width. There appears to be some scatter in the results, most likely caused by the 
process of discretising an angled smooth walled channel onto a Cartesian grid, but otherwise the form is 
promising. In general, the loss factors tend to be similar to the results obtained from the test data. One of the 
issues noted here is that when discretising an angled smooth walled channel onto a Cartesian grid, the 
apparent steps in the wall cause additional head loss in this scheme, as the flow must change direction 
around each step. The approach adopted within the scheme for solving this issue is to progressively modify 
the effective widths of the faces adjacent and perpendicular to the wall leading into and out of steps, thus 
allowing the flow in the cells adjacent to the wall to maintain a velocity vector parallel to the average wall line. 
 

 
Figure 7. Head loss factor vs abrupt bend angle. 

 
3 UK ENVIRONMENT AGENCY TEST 06A 
 The other test case studied for which test data were available was the dam breach model which forms 
part of the UK Environment Agency’s test suite, UK Environment Agency (2013). In this scaled test a reservoir 
was released into a long channel containing a building which obstructs the flow. This is a demanding case for 
comparison as the flow was highly transient and at times supercritical with moving hydraulic jumps. Figure 8 is 
a schematic of the test setup and a snapshot of the simulation flow velocity at time t = 7s is shown in Figure 9. 
 

 
Figure 8. UK EA Test 06A, schematic. 
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Figure 9. UK EA Test 06A, flow velocity magnitude at t = 7s. 

 
 More details regarding this test can be found in the UK EA test notes. The solution showed in Figure 9 
was computed using the 2nd order spatial scheme, a mesh size of 0.05m, and constant viscosity of 0.05m2/s. 
Water depth and velocity were recorded at a number of gauge locations. For brevity the depth and velocity at 
the first three gauges are compared in Figure 10, where it can be seen that the 2nd order solution offers a 
better to the test results. 
 

(a) Gauge 1 depth (b) Gauge 1 velocity 

(c) Gauge 2 depth (d) Gauge 2 velocity 

(e) Gauge 3 depth (f) Gauge 3 velocity 
Figure 10. UK EA Test 06A, comparison of test and simulation. 

 
 Particular interest was in the results for gauge 2, in which the flow is super critical from about t = 2s to t = 
10s, and then the hydraulic jump moves upstream over the gauge at approximately t = 10s and the flow 
becomes subcritical. The timing of this phenomenon is sensitive to the choice of viscosity coefficient and a 
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constant viscosity of 0.05m2/s was found to be optimal. Both 1st and 2nd order schemes reproduce hydraulic 
jumps well. It is also worthy to note that a better fit with test data was obtained with Manning’s bed friction 
coefficient of 0.012 in place of the suggested 0.01 in the UK EA test notes. 
 Figure 11 compares the results for the depth at gauge 2 using both 1st and 2nd schemes and for the three 
mesh sizes 0.100m, 0.050m, and 0.025m. These results indicate that for both 1st and 2nd order schemes there 
was very little difference in the results between 0.050m and 0.025m cell size. The building width was 0.4m, 
and a mesh size of 0.05m represents 8 cells across the building. 
 

 

(a) 1st Order, gauge 2, varying cell size (b) 2nd Order, gauge 2, varying cell size 
Figure 11. UK EA T06A, mesh size convergence. 

 
 As noted earlier, adaptive time-stepping was used to maintain the three control numbers ௨ܰ, ௖ܰ, ௗܰ 
(Equation 8) below target limits. With many simulations, as the model evolves, the number controlling the time 
step may change. The scheme makes provision to run at a time step that was some fraction of the target time 
step, effectively causing ௨ܰ, ௖ܰ, ௗܰ to be controlled to values that were some fraction of the default targets. 
The UK EA Test 06A model was re-run with a lower constant viscosity of 0.02m2/s, so as to cause the 
simulation to be courant number, controlled initially before becoming controlled diffusion number. Figure 12 
represents the depth at gauge 1 using the 2nd order solver and the full target time step (Co = 1.0), 0.9, 0.8 and 
0.7 of the target time step. Firstly note that the results for Co = 0.7 lie on top of the results for Co = 0.8 which 
indicates that time-step convergence has been achieved at Co = 0.8. Secondly note that there were small 
deviations from the converged results at Co = 0.9 and 1.0. The scheme incorporates NaN checking, and 
where a time step has failed the solution is wound back and the time-step repeated with a half-sized step. On 
successful completion of a repeated time step, the time step size was gradually increased towards the target 
value over successive time steps. This feature has kept both of these larger time step simulations running, 
even though their results in this case are of questionable quality. It is always recommended that a modeller 
check for time step convergence of the results, as the required time step fraction may vary with the exact 
particulars of the model. 
 

 
Figure 12. UK EA T06A, time step convergence, 2nd 
order spatial scheme (Note that results for Co = 0.7 

overlay those for Co = 0.8). 
 
4 COMPARISON WITH TUFLOW STELLING/SYME SCHEME 
 The abrupt 90 deg bend benchmark was solved using the established TUFLOW ADI finite difference 
implicit scheme as developed by Stelling and modified by Syme (1991) with the results shown in Figure 13. 
The ADI scheme shows some convergence with finer mesh sizes with constant only viscosity, but not with 
proportional only viscosity. As highlighted earlier, the proportional viscosity term becomes small in the limit of 
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small cell sizes and if the velocity gradients were determined by problem geometry and not mesh size. 
Significant interest is that with constant viscosity the Stelling/Syme scheme converges to the asymptotic limit 
from below, rather than from above as was the case with the new HPC scheme. This was consistent with 
applications of the Stelling/Syme in practice where a small amount of additional energy loss is typically 
required at sharp bends and flow constrictions when benchmarking and calibrating models, Syme (2001). 
 Of even more interest, as shown in Figure 13b, the combination of both proportional and constant 
viscosity terms (M=1.00, C=0.005) can generate a head-loss vs mesh size curve that is nearly flat (i.e. mesh 
size independent) for meshes 3 cells across the flume width and finer. 
 

 
(a) Various constant viscosities (b) Various proportional viscosities 

Figure 13. TUFLOW Stelling/Syme scheme, abrupt 90 deg bend head loss. 
 
 The UK EA Test 06A benchmark was also solved with the implicit Stelling/Syme scheme using the 
default eddy viscosity coefficients of M=0.5 and C=0.05, with the results for gauge 2 shown in Figure 14. The 
agreement between the two schemes is excellent, and the results for the other gauges show similar fidelity. 
 

 
(a) Gauge 2 depth (b) Gauge 2 velocity 

Figure 14. UK EA T06A, Gauge 2 results for 2nd order HPC and Stelling/Syme schemes, cell size 0.05m. 
 
5 IMPLICATIONS FOR REAL WORLD APPLICATION 
 As shown above, the choice of Smagorinski and constant viscosity formulations has a profound effect on 
bend head loss estimation for the cases examined. For both the new explicit HPC scheme and the standard 
Stelling/Syme implicit scheme, using proportional viscosity only does not lead to mesh-size convergence and 
may also allow chaotic solutions to develop in the limit of very small cell sizes. For the new explicit HPC 
scheme, either 1st or 2nd order interpolation in combination with a small constant viscosity appears to yield 
excellent results. However, the optimal constant viscosity depends on the problem scale of 0.002m2/s for the 
laboratory scale flume tests, and approximately 0.05m2/s for the UK EA Test 06A. This is to be expected since 
the term is dimensional, and therefore its optimum value is likely to change with problem scale (and it also 
must be supplied in correct model units). Further research into the scale dependence of this term is needed, 
as the results would indicate a reducing constant viscosity coefficient with reducing problem scale. 
 For 90 degree bend losses, the new HPC scheme yields results that are not strongly dependent on mesh 
size provided the flow channels are represented by at least 3 cells across their width. In practice, it may not be 
possible to always have this level of mesh resolution; therefore, the impact of mesh size and choice of 
viscosity on key results should be investigated by the modeller prior to production runs. 
 It was always useful to bear in mind that a model’s utility was not determined by whether it was a perfect 
representation of reality, but by how well it allows investigators to confidently consider as previously unseen 
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flow scenarios and determination of the potential impacts of material changes. Such confidence in a model’s 
utility is derived through both calibrations against available data and sensitivity studies. 
 
6 SUMMARY 
 The finite volume scheme utilised in the new TUFLOW 2D HPC solver was presented and benchmarked 
against test results for two distinctly different test cases. 
 The solver demonstrated mesh size convergence for both test cases in both 1st and 2nd order spatial 
interpolation schemes with a constant viscosity model. Convergence typically required 8 cells or more across 
feature widths, however meshes as coarse as three cells across feature widths still appear to perform well 
with regard to predicting head loss. 
 The solver demonstrated time step convergence. For the highly transient test case ‘UK EA Test 06A’, 
convergence was obtained using time steps of 0.8 of the limiting time step targets. 
 The solver reproduced the test results from UK EA Test 06A well including supercritical flow and 
hydraulic shocks/jumps. 
 Using only the proportional term in the Smagorinsky viscosity model, mesh size convergence is not 
demonstrated for either spatial scheme, possibly due to the model viscosity diminishing at smaller mesh sizes. 
 In the absence of viscosity, the 2nd order spatial scheme admitted eddy structures in the solution, while 
the 1st order solution demonstrated a dampening of eddy formation most likely due to numerical diffusion. 
 In terms of best practice modelling with the new HPC scheme it is recommended that 

(1) as far as practical meshes utilise three or more cells across any feature of interest; 
(2) the 2nd order spatial scheme can be selected, unless the 1st order scheme produces sufficiently 

similar results to the 2nd order scheme; 
(3) the overall time step control to be set to 0.8 of default targets; and 
(4) sufficient (and only sufficient) constant viscosity is used to prevent multitudes of small eddies 

forming in the solution. 
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ABSTRACT  
 
High performance calculations are of great importance to the simulation of dam-break events, as accuracy 
and accelerated speed are the key factors in the process of dam-break flow modeling. Based on the finite 
volume method, this paper established a high performance dam-break flow simulation model. An explicit 
scheme was used to discretize the 2D shallow water control equations and Roe’s approximate Riemann 
solution of the finite volume method was adopted for the interface flux of the grid cells. A graphics processing 
unit (GPU)-based parallel method, OpenACC, and Open Multi-Processing (OpenMP) parallel mode are used 
to realize parallel computing, respectively. Because an explicit discrete technique is used to solve the 
governing equations, and there is no correlation between the grid calculations in a single time step, the 
parallel dam-break model can be easily realized by adding OpenACC and OpenMP directives to the loop 
structure of the grid calculations. To analyze the performance of the model, we considered the Pangtoupao 
flood storage area in China using a multi-core computer with an Nvidia Tesla K20c card and two different grid 
division schemes. By carefully studying the implementation method and optimization of data transportation in 
the parallel algorithm, a speedup factor of 17.76 can be achieved with OpenACC and a speedup factor of 8.6 
was achieved with the conventional OpenMP parallel mode on a 16-kernel computer. The results demonstrate 
that the optimized feature settings greatly influence the degree of speedup and models involving larger 
numbers of calculations exhibit greater efficiency and higher speedup factors. In addition, both of the 
OpenACC and OpenMP parallel modes are found to have good portability, making it easy to implement 
parallel computation from the original serial model. And, it is possible to simulate dam-break flows in large-
scale watersheds on a single computer with parallel computing. 
  
Keywords: Dam-break flow; parallel computation; graphics processing unit; OpenACC; OpenMP.  
 
 
1 INTRODUCTION  

Dam projects not only bring about great benefits to human beings, but also give rise to potential dangers. 
Although the possibility of a dam-break is very small, should one occur, it will bring great loss of life and 
property (Kocaman, 2012; Erpicum, 2010). Therefore, there is a need to develop high performance 
mathematical models of the flooding that would result from a dam-break event to provide the theoretical and 
technical foundation of a risk analysis and disaster evaluation system.  

Dam-break flows, whose evolution occurs in dry riverbeds, are a type of rapidly varying flow. Potential 
models need to solve discontinuous flow calculations with wet/dry boundaries (Brufau et al., 2004). To 
improve the simulation accuracy, an appropriate solution and a fine mesh are usually required. For problems 
involving a discontinuous flow and wet/dry boundaries, the finite volume method is generally applicable. If the 
explicit form is adopted in the discretization of the friction source, the calculation of boundary fluxes uses only 
previous values and there is no correlation between grid calculations in the same time step. This latter point 
makes the model algorithm simpler and more effective (Zoppou and Roberts, 2002). Therefore, the explicit 
finite volume method is widely applied in the simulation of water flow (Brodtkorb et al., 2012; De La Asunción 
et al., 2011; Lastra et al., 2009). 

To improve the computational efficiency of mathematical models, parallel algorithms have been 
introduced (Neal et al., 2010; Zhang et al., 2013). In terms of their realization, parallel computation algorithms 
fall into three categories: message-passing interface (MPI) models, shared memory models (OpenMP), and 
GPU general computing models (Ghosh et al., 2012; Leandro et al., 2014; Reyes et al., 2012). In a shared 
memory model, communication between threads is achieved by reading and writing directly to share memory. 
Using the OpenMP standard, it is easy to solve the traditional programming problem of load balancing. Models 
developed under this standard have the advantages of simplicity, good extendibility, and portability (Chapman 
et al., 2008). Yu (2012) researched the transport processes of non-uniform sediment in the Yellow River by 
embedding OpenMP parallel instructions into a loop structure and obtained 1.55× of speedup in a dual-core 
server. Neal et al. (2010) also added OpenMP instructions to the major cycle of a flood inundation model, 
acquiring 5.8× of speedup on eight-core servers. In mainstream parallel algorithms, GPU models obtain good 
acceleration (Grillo et al., 2013). GPUs have multi-streaming processors and powerful computing capabilities, 
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which are of vital significance for efficient parallel computation with large amounts of data and high precision 
requirements (Wang et al., 2014). The OpenACC application programming interface is one of the GPU 
acceleration methods, it is a collection of compiler directives and runtime routines that use the C/C++ or 
FORTRAN language to compile the specified cycle and code. Pickering et al. (2015) analyzed the popular 
OpenACC programming standard, as implemented by the PGI compiler suite, to evaluate its utility and 
performance potential in computational fluid dynamics applications. Herdman et al. (2012) developed an 
explicit hydrodynamics scheme in the CloverLeaf mini-application based on OpenACC directives and Hart et 
al. (2012) used the OpenACC programming model to accelerate the Himeno benchmark code and analyze the 
resulting performance.  

The main goals of this study are as follows: (1) to establish a two-dimensional hydrodynamic model 
based on the finite volume method that can simulate the dam-break flow routing process of the Pangtoupao 
flood storage area; (2) to develop parallel dam-break models using OpenACC and OpenMP, respectively, and 
investigate the performance of parallel models under different mesh sizes, and (3) to analyze the main factors 
influencing the computation time and efficiency. 

 
2 STUDY AREA 

The Pangtoupao flood storage area is located on the left bank of the Nen and Songhua Rivers, in the 
upper reaches of Zhaoyuan County, northwest of Harbin City, China (Figure 1). The length of the storage area 
is 46 km from east to west and 58 km from north to south, giving a total area of 1994 km2 and a volume of 
about 55 × 108 m3. The dam in Pangtoupao was breached on August 15th, 1998, and multiple levees were 
breached by the flooding in the Nen and Songhua Rivers.  

The dam-break flood hydrodynamic model was built with a digital elevation model (resolution 10 m) of 
Pangtoupao and the flood data observed in Songhua River in 1998. The OpenACC platform used to evaluate 
the model’s performance consisted of an Intel® Xeon® E5-2603 CPU with an Nvidia Tesla K20 GPU card, 
CPU frequency of 1.80 GHz, and memory capacity of 4 GB. The software development environment 
combined the Windows 7 64-bit operating system with the PGI PVF version 14.9 compiler. The OpenMP 
platform is used to evaluate the model’s performance consisted of a Lenovo T350 G7 server containing 16 
kernels, with a CPU frequency of 2.4 GHz and memory capacity of 8 GB. Visual Studio 2008 and Intel Visual 
Fortran11.0 were used to build the model. 

 

 
Figure 1. Sketch of the study area. 

 
3 METHOD 
 
3.1 Dam break flow model 
 
3.1.1 Control equation 

Dam-break flows have the approximate properties of plane flows. The conservative form of the planar 2D 
shallow water equations is as follows: 

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

5052 ©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print)



 

 
∂U

∂t
+
∂F

∂	x
+
∂G

∂y
=S                                                                              [1] 

U= ൥
h
hu
hv
൩ , F= ൦

hu

hu2+
gh2

2
huv

൪ , G= ൦

hv
huv

hv2+
gh2

2

൪ , S= ቎
0

gh(Sox+Sfx)
gh(Soy+Sfy)

቏ 

where h is water depth (m) and u, v are the water velocities in the x and y directions, respectively. 
 SOx=- ∂Zb ∂x⁄ 	and SOy=- ∂Zb ∂y⁄  describe the bottom slope in the x and y directions, respectively, and 

Sfx=n2u√u2+v2h-4 3⁄  and Sfy=n2v√u2+v2h-4 3⁄  give the friction gradient in the x and y directions, respectively. Zb 
is the bottom elevation and n is the Manning coefficient. 

The equation does not consider the influence of the Coriolis force or wind. 
 

3.1.2 Computational grid 
The Pangtoupao flood storage area has an irregular complex shape. To ensure the precision of the 

calculations, a quadrilateral unstructured mesh is selected to cover the whole computation area. Two meshes 
are studied in this paper, with average side-lengths of 350 and 150 m. The total number of quadrilateral mesh 
cells is 18,109 and 98,991. 

 
3.1.3 Flux calculation and source discretization 

A cell-centered format is adopted in the calculations, where the physical variables are defined in the grid 
center, as shown in Figure 2. Using Gauss’s formula, we can integrate Eq. [1] on a grid to give: 
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Figure 2. Schematic diagram of the finite volume discretization. 

 
The line integral along the grid is transformed to the volume integral: 
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where i is the number of edges, ∆lki is the length of each side, nki is the outward normal vector of each side, 
∆sk is the area of each calculation unit, and Eki is the numerical flux via edge i.  

The interface flux is solved using Roe’s scheme, which can effectively compute the interruption of dam-
break flow: 
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where J ̅is the Roe average of the Jacobian matrix J=
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. The eigenvalue matrix of J ̅is λk

ഥ  (k = 1, 2, 3), and 

the related eigenvectors are ekതതത  (k = 1, 2, 3). UL and UR are left and right interface conservative form 
variables, respectively. The detailed process of solving a Roe scheme was described by Toro (2009). 
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¦ ķ+1

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print) 5053



          

 

 

Simple discretization of the source term cannot obtain harmonious calculation results, so a source term 
dependent on bottom topography must undergo Eigen-decomposition and upwind treatment to balance the 
interface flux (Hubbard et al., 2000), as shown in Eq. [5]: 
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2
3
k=1 (1-4

j=1 sign(λത
k
))αkeതk∆sj]

j                                 [5] 

where sign() is the sign function, a1=-
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respectively. 
To realize a dam-break model in a parallel system, an explicit scheme is used to discretize the friction 

source in Eq. [3], giving: 
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After the discretization, calculating ∆U only requires the water level, flow, and elevation of the front time 
step. There is no correlation between each grid cell calculation in the current time step. 

 
3.2 Parallel model implementation 

The implementation of the dam-break model with a finite volume discretization involves three steps: data 
input, numerical calculation, and results output. The first part includes the specification of initial parameters, 
grid information, initial water level, and flow. The second part mainly includes the calculation of the flux and 
source terms. The third part outputs the water depth and velocity of each grid cell. The calculation of grid cells 
belongs to the main calculation unit in a time step, and each of these units must solve the flux and source 
equations in the grid cell. Because an explicit discretization scheme is used to solve the equations, each grid 
calculation requires only the results from the previous time step. There is no correlation between the grid 
calculations in the same time step. Therefore, adding parallel instructions to the circulation calculations in a 
time step can realize parallel computing. 

 
3.2.1 OpenACC parallel method 

OpenACC is a high-level directive-based programming model that accelerates parallel parts using the 
C/C++ and FORTRAN languages. In dam-break flow models, the key to a parallel implementation based on 
OpenACC is that the calculation-intensive region is offloaded to the GPU for parallel computation. The 
simulation is iterated over a series of time steps and it is most beneficial if all calculation units in a time step 
can be run on the GPU. The model uses an explicit scheme to calculate the flow field and the numerical mesh 
calculation is uncorrelated within a single time step. Thus, the cycle calculation in each grid can be executed 
in parallel. GPUs have numerous computation cores. Different grid cell calculations are distributed to these 
different cores and each core executes the grid cell flux and source calculations. In this study, an Nvidia Tesla 
K20c card was used to execute the parallel computations. This card has a Kepler GK110 GPU and 2496 
Nvidia CUDA cores, meaning the dam-break model can be executed efficiently with the OpenACC application. 
The calculation results are deposited directly into the memory structure, allowing the velocity and water depth 
to be updated.  

The model targeted by OpenACC API-enabled implementations is host-directed execution with an 
attached accelerator device. The host allocates memory on the accelerator and copies data and the 
corresponding code from CPU to GPU memory. The data and code are allocated to free resources on the 
GPU to accelerate the computation and back up the data once the calculations are completed. The host 
initiates the data transfer, allocates memory on the accelerator device, sends the code to the accelerator, 
passes arguments to the compute region, queues the device code, waits for completion, transfers results back 
to the host, and deallocates memory (see Figure 3).  

 
3.2.2 OpenMP parallel method 

The same as the OpenACC parallel method, the key to a parallel implementation based on shared 
memory is to determine the main loops that can be run separately in the model. OpenMP parallel instructions 
can then be used to allocate these uncorrelated units to different processors, decreasing the calculation time. 
As shown in Figure 4, adding OpenMP instructions to the circulation calculations in a time step can realize 
parallel computing. Different grid cell calculations are distributed to different threads, and each thread 
executes grid cell flux and source calculations. The calculation result will be deposited into the memory 
structure directly, allowing the velocity and water depth to be updated. The flowchart of the parallel model 
solution is the same as the serial one, with the only difference being that some OpenMP instructions are 
added to the time step loop. Thus, it is easy to realize parallel computing with OpenMP in this kind of model. 
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Figure 3. Flowchart of parallel computing in the dam-break model based on OpenACC application. 

 

 
Figure 4. Flowchart of parallel computing in the dam-break model. 

 
3.3 Model performance testing 

To comprehensively analyze the model performance, we conduct the following operations: (1) verify the 
precision of the model calculations; (2) discuss model speedup and efficiency for different mesh sizes; (3) 
analyze the main factors influencing the model calculation’s time and efficiency, and (4) contrast OpenACC 
and OpenMP, two different parallel algorithms, with a simple serial program.  
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To compare the results between different mesh schemes, the study area is divided in two different ways 
using a quadrilateral unstructured mesh. 

Scheme 1: Mesh size of 350 m, giving 18,109 grid cells. 
Scheme 2: Mesh size of 150 m, giving 99,046 grid cells. 
The basic parameters and conditions of the model are as follows: 
(1) The basic 1998 Songhua River observed flood data were used as the initial entrance flow, with a 

submerged area depth of 0 m; 
(2) The Manning roughness value of the study area is 0.035; 
(3) The minimum water depth method was used to treat the wet–dry boundary, with dry grid cells initially 

assigned a small depth value of 0.05 m and a velocity of 0 m/s. Cells in which the water depth is 
greater than 0.05 m are defined as being wet; 

(4) The Pangtoupao dam break occurred on August 15th, 1998. As the breaches quickly broadened to 
form a stable entrance width, we adopted a flood breach width of 530 m in the calculations; 

(5) At 08:00 on August 28th, 320 h after the dam break, the flood storage area reached its maximum 
value. To compare data on the maximum submerged area after the flood, the total runtime was set 
to 320 h. 

 
4 RESULTS AND DISCUSSIONS 
 
4.1 Model verification  

Table 1 shows a comparison between the measured data and values calculated through a serial model. 
As shown in the table, the relative error between the calculated and measured values is less than 2.5%. This 
shows that the model has good calculation accuracy. 

 
Table 1. Comparison between measured and calculated values. 

 Inundated area 
(km2) 

Impoundage 
(×108m3) 

Mean depth (m) 

Measured value 1160 35.5 3.06 
Calculated value 1187 35.2 3.01 

 
The simulated flood routing of the Pangtoupao flood storage area during the flood event is shown in 

Figure 5. We can see that the flood entered a narrow valley following the breach and then rushed downstream 
into the low-lying areas from the mouth of the valley, forming a huge flooded area. The simulation of this 
submerging process agreed with the observed data (HBMWR and HBSWRC, 2002). 

The OpenACC and OpenMP parallel model calculation results were the same as for the serial model, 
indicating the veracity of the parallel method. The results show that the parallel model has acceptable 
accuracy for the simulation of dam-break flows. 

 
4.2 Parallel performance analysis 

OpenMP and OpenACC are different parallel algorithms with simple directives and efficient 
characteristics. The OpenMP execution of the parallel model is based on multiple CPU threads, whereas 
OpenACC executes parallel model based on GPU computing capacity. These two different parallel 
mechanisms have a number of similarities in their compiler modes. The two mechanisms both use the 
compiler guidance mode to add directives in the parallel region without modifying the source code. OpenACC 
offloads code to the accelerator through directives. OpenMP is controlled by the main thread, which generates 
sub-threads to execute computing tasks. The control flow returns to the single main thread after the 
calculation has finished. 

There are three performance evaluation indices for the parallel model: speedup, efficiency, and 
extendibility. 

The speedup formula is as follows: 
 

                                                   S=T/Tn                                                                          [7] 
 
where T is the serial computing time and Tn is the computation time with parallel method. 

For the four mesh division schemes of the Pangtoupao flood storage area, the different capacity levels 
were compiled on both the CPU and the GPU accelerators. Because the calculation time for these entire 
schemes is too long, we studied the first 100 h to compare model performance. The time, speedup, and 
efficiency required for the calculation are presented in Table 2. 

We can see that two schemes attained a dramatic reduction in execution time. For the 350 m mesh 
scheme, a 320 h flood process took about 12 h to calculate with the serial model, whereas only 1.2 h was 
required with a parallel model on the Nvidia GPU Kepler K20c card. This rapid simulation will contribute to 
improved flood prevention and disaster planning. Thus, the precision and speed of the model calculation can 
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be effectively improved by mesh refinement and parallel computing, and we can choose the most appropriate 
scheme according to the actual demand. The computation time, speedup, and efficiency all increased with the 
number of grid cells. The fineness of the mesh is the main factor affecting computation time. As the mesh 
became finer, the number of calculations increased, which led to the increase in simulation time. The speedup 
and efficiency also improved as the number of grid cells increased. A speedup factor of 10.77 was achieved 
with 18,109 grid cells, whereas 17.76 was achieved with 98,991 cells, demonstrating that the parallel model 
performs better with an increased calculation load. 
 

 
Figure 5. Simulated submerging process of the Pangtoupao flood storage area during the flood event. 

 
Table 2. Parallel results of different calculation schemes for 100h flood process simulation. 

k Ak(m) NELEM  Thread count GPU
1 2 4 8 12 16  

1 350 18109 T 13622(12h) 7327 3802 2386 1954 1792 1376(1.2h) 
 S - 1.86 3.59 5.73 6.99 7.62 10.77 

TS - 46 72 83 86 87 91 
2 150 98991 T 81685 42668 21931 11745 9942 9458 4849 
 S - 1.91 3.72 6.95 8.22 8.64 17.76

TS - 48 73 86 88 88 94 
Notes: Ak: average grid size, NELEM: grid number, T: execute time (s), TS: time saving ratio (%), S: speedup of different calculation 
schemes; the data in the brackets are the time used to simulate 320h flood process. 
 

In Scheme 1, where the grid size was 350 m, the parallel efficiency of the OpenMP parallel model 
increased gradually with the number of threads, achieving a speedup factor of 7.62 with 16 threads. For the 
same grid number, the OpenACC implementation achieved a speedup factor 10.77, which is 1.41× faster 
overall than the OpenMP parallel model. OpenMP attained its optimal speedup factor of 8.64 with a grid size 
of 150 m. The OpenACC parallel model achieved a corresponding speedup factor of 17.76. Thus, in this case 
study, OpenACC achieved a better acceleration effect than OpenMP. In addition, the OpenACC parallel 
algorithm required only one GPU to perform the intensive model calculations, which indicates good 
expansibility and portability. 

 
5 CONCLUSIONS 

A high-performance dam-break flow simulation model was established based on the finite volume 
method. An explicit scheme was used to discretize the 2D shallow water control equations and Roe’s 
approximate Riemann solution of the finite volume method was adopted for the interface flux of the grid cells. 
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For the dam-break flow observed in 1998 in the Pangtoupao flood storage area, accurate results were 
obtained from the dam-break flow simulation. 

The OpenACC and OpenMP application were used to realize parallel computing and the implementation 
method and key technologies of the parallel dam-break model were described. Because an explicit discrete 
technique is used to solve the governing equations, and there is no correlation between the grid calculations 
in a single time step, the parallel dam-break model can be easily realized by adding OpenACC and OpenMP 
directives to the loop structure of the grid calculations.  

The OpenACC-annotated dam-break model was executed on the Nvidia Kepler K20c platform and two 
different mesh computation schemes were established to analyze the parallel performance of the dam-break 
model. The results revealed that models involving a larger number of calculations achieve greater efficiency 
and a higher rate of acceleration. The GPU executions were demonstrated to run up to 17.76 faster than the 
original sequential CPU implementation. For the 350 m mesh scheme, the parallel model required just 1.2 h to 
calculate a 320 h flood process. The OpenACC acceleration effect was better than that of the OpenMP 
method with a 16-kernel computer. For the 150 m mesh scheme, the OpenACC implementation was 2.06× 
faster than the OpenMP parallel model with 16 threads. 
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ABSTRACT  
  
Results of a high resolution Detached Eddy Simulation (DES) are used to characterize the evolution of a 
shallow mixing layer developing between two parallel streams in a long open channel over two-dimensional 
(2D) dunes (Figure 1). The study discusses the vertical non-uniformity in the mixing layer and provides a 
quantitative characterization of the growth of the large-scale quasi 2D coherent structures with the distance 
from the splitter plate. The presence of large-scale roughness elements in the form of an array of two-
dimensional dunes with a maximum height of 0.25D (D is the channel depth) induces a very rapid and larger 
shift of the centerline of the mixing layer due to the increased influence of the bottom roughness. Results 
show that in streamwise sections situated after 100D (D is the channel depth) from the splitter plate, the width 
of the mixing layer close to the free surface stays constant. The tilting of the mixing layer interface toward the 
low speed stream is observed as the free surface is approached in all vertical sections. Consistent with 
visualizations of the mass transport of a passive scalar within the mixing layer, close to the free surface, the 
estimated streamwise length of the quasi 2D mixing layer eddies is about 1.5 to 2.0 times larger than the local 
width of the mixing layer. 

 
Keywords: Shallow mixing layers; detached eddy simulation; dunes. 

 
1 INTRODUCTION 
 The mixing layer region controls the exchange of mass and momentum between two streams of different 
velocities. Turbulent shallow mixing layers are observed in rivers, coastal regions and atmosphere. A typical 
example relevant for environmental flows is the flow downstream of a river confluence with a small angle 
between the two tributaries. As in most cases the flow depth is much smaller than the width of the river 
downstream of the confluence, the flow conditions are shallow.  
 The shallowness of the fluid and the bottom friction significantly affect the dynamics of a shallow mixing 
layer compared to that of a free (deep) mixing layer (Uijttewaal and Booij, 2000). As a result in a shallow 
mixing layer: a) the transverse spreading rate reduces with the distance from the origin of the mixing layer 
(end of splitter plate) until the growth of the mixing layer ceases; b) the velocity difference on the two sides of 
the mixing layer decreases in the streamwise direction; and c) the axis of the mixing layer shifts toward the 
low-speed side. The vertical development of the large-scale eddies in a shallow mixing layer is constrained by 
the bed and free surface. This makes anisotropic effects very important. Though the large-scale eddies are 
quasi two-dimensional (2D), the interaction of the flow with the bed generates 3D small-scale eddies. 
 

 
Figure 1. Sketch showing the computational domain around the splitter plate. 

 
 The development of a shallow mixing layer developing between two parallel streams with unequal bulk 
velocities U10 and U20 (the index ‘0’ denotes in-coming flow values upstream of the splitter end) in a long open 
channel is investigated numerically using Detached Eddy Simulation (DES). Previous experimental 
investigations of shallow mixing layers with similar parameters (flow depth D, mean flow velocity 
U0=(U10+U20)/2) to the one considered in the present numerical study were reported by Chu and Babarutsi 
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(1987), Uijttewaal and Booij (2000) and van Prooijen and Uijttewaal (2002). In the numerical simulation, a 
splitter wall separates two fully-turbulent currents (see Fig. 1). As a result of the presence of the free surface 
and the bed, the vertical development of the large-scale turbulent structures in the mixing layer is constrained 
with respect to the widely studied case of a free mixing layer. The growth of the large-scale coherent 
structures in the mixing layer takes place mostly in the horizontal directions and is driven by the transverse 
shear induced by the difference in the mean velocities of the two streams. 
  Fully three-dimensional eddy-resolving numerical simulations have the advantage that they allow a 
detailed investigation of the variation of the turbulence characteristics over the depth of the mixing layer and of 
the vertical motions and associated vertical momentum transport. Such information is not yet available from 
experimental studies that concentrated on the investigation of the flow in a horizontal plane situated near or at 
the free surface (Chu and Babarutsi, 1988; Uijttewaal and Booij, 2000). In the numerical simulation, a splitter 
wall separates two fully-turbulent currents (see Fig. 1). As a result of the presence of the free surface and the 
bed, the vertical development of the large-scale turbulent structures in the mixing layer is constrained with 
respect to the widely studied case of a free mixing layer. The growth of the large-scale coherent structures in 
the mixing layer takes place mostly in the horizontal directions and is driven by the transverse shear induced 
by the difference in the mean velocities of the two streams. 
 Fully three-dimensional eddy-resolving numerical simulations have the advantage that they allow a 
detailed investigation of the variation of the turbulence characteristics over the depth of the mixing layer and of 
the vertical motions and associated vertical momentum transport. Such information is not yet available from 
experimental studies that concentrated on the investigation of the flow in a horizontal plane situated near or at 
the free surface (Chu and Babarutsi, 1988; Uijttewaal and Booij, 2000).  

 
2 NUMERICAL SIMULATIONS  
 A general description of the DES code was given in Chang et al. (2007). The 3D incompressible Navier-
Stokes equations were integrated using a fully-implicit fractional-step method. The governing equations were 
transformed to generalized curvilinear coordinates on a non-staggered grid.  Convective terms in the 
momentum equations were discretized using a blend of fifth-order accurate upwind biased scheme and 
second-order central scheme. All other terms in the momentum and pressure-Poisson equations were 
approximated using second-order central differences. In the present DES simulation, the Spalart-Allmaras 
(SA) one-equation model was used. The time integration was done using a double time-stepping algorithm. 
The time discretization is second order accurate. The validation of the code including for simulations involving 
scalar transport was discussed in Chang et al. (2007). 
 The Reynolds number defined with the channel depth, D (=0.067mm), and the mean velocity of the two 
currents, U0 (=0.23 m/s), is close to 15,500. The splitter length is 23D. The width of the channel is 47D and the 
length of the channel downstream of the splitter is 157D (=10.55 m) (Fig. 1). The channel bottom is smooth. 
The depth-averaged mean velocities of the two streams are U10=0.61U0 and U20=1.39U0, respectively. The 
mean velocities in the z/D=0.9 plane are 0.7U0 and 1.56U0, respectively. These conditions are similar to those 
present in the second test case studied by Uijttewaal and Booij (2000) where the streamwise velocity values 
at z/D~0.9 were used to estimate U10 and U20. The bed-friction velocities non-dimensionalized by the bulk 
velocity in each stream are 0.052 and 0.048. The spatial development of the shallow mixing layer was 
analyzed using DES on a mesh containing close to 10 million cells (912*336*32 in the streamwise, spanwise 
and vertical directions). The viscous sub-layer was resolved in the simulation and no-wall functions were used. 
In a second simulation, an array of identical 2D dunes is present. The wavelength of the dunes is 3.75D and 
their height is 0.25D. The dunes have a generic shape that approximates dunes developing in medium-size 
rivers. The equivalent non-dimensional bed roughness is close to 500 wall units (fully-rough regime). 
 The incoming flow contains realistic turbulence fluctuations obtained from two preliminary simulations 
with periodic boundary conditions in the streamwise direction. The free surface was treated as a rigid lid which 
is justified as the channel Froude number (Fr=0.28) is much less than one. The wall surfaces are treated as 
no-slip boundaries. Mass exchange processes are studied by considering the transport of a passive scalar for 
which an advection-diffusion equation is solved. The passive scalar was introduced continuously at the end of 
the splitter plate over the whole depth of the channel. The Schmidt number was assumed equal to unity.  

 
3 RESULTS  

 Comparison of the instantaneous concentration fields in horizontal planes situated near the bed (z/D=0.1) 
and the free surface (z/D=0.9) in Fig. 2 shows that the coherence of the quasi-2D eddies is decreasing as the 
channel bottom is approached.  Also, there is a clear loss of the coherence of the large-scale eddies for x> 
100D (~6.7 m, x is measured from the end of the splitter plate). This explains the observed decrease in the 
rate of growth of the mixing layer width in the streamwise direction (see discussion of Fig. 3) at all flow depths. 
The decay in the rate of growth increases with the decrease of the distance from the bed (see Kirkil and 
Constantinescu, 2008 for more details). The concentration contours in Fig. 2 suggest a rate of growth close to 
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zero at z/D=0.1 for x/D>120D. Close to the free surface the average size of the largest eddies in the 
transverse direction is around 10D-15D (0.67-1.00 m) in the downstream part of the channel (x/D>120). 
  

 

 
 

 

 

 

Figure 2. Contours of scalar concentration in the instantaneous (left) and mean (right) flow. a) z/D=0.9; b) 
z/D=0.1. The dashed-dot-dot line corresponds to the jet centerline determined from the mean concentration 
profiles. The dashed line corresponds to the jet centerline determined from the mean streamwise velocity 

profiles. 
 

 Comparison of the mean concentration profiles at z/D=0.9 and z/D=0.1 in Fig. 2 shows the positions of 
the centerline inferred from the mean streamwise velocity profiles and from the mean concentration fields are 
not identical. Based on the distribution of the mean concentration, the vertical tilt of centerline surface in the 
transverse direction is larger than 1.5D (~0.1 m) for x>120D. The vertical shift is slightly smaller in the case in 
which the velocity profiles were used to calculate the position of the centerline.  

 The development of the mixing-layer in the vertical direction is strongly non-uniform. This can be inferred 
from Fig. 2 where the width of the mixing layer inferred from the mean concentration field at a given 
streamwise location is significantly smaller at z/D=0.1 compared to z/D=0.9. Figure 3 allows a more 
quantitative comparison of the width of the mixing layer at different levels (z/D=0.1 and z/D=0.9) and in the 
depth-averaged flow. The width of the mixing layer in Fig. 3 was estimated based on the mean streamwise 
velocity field. The local width of the mixing layer is defined as the maximum slope thickness (Uijttewaal and 
Booij, 2000): 

ߜ                                             ൌ
௎భି௎మ

ሺడ௨/డ௬ሻ೘ೌೣ
																					                                    [1] 

where U1(x) and U2(x) are the streamwise velocities in the two streams at a given streamwise location, y is the 
spanwise direction and u is the streamwise velocity. The curves in Figure 3 are obtained by using eqn. (1). 

 
  

 

 

 

 

 

 

 

 

 

Figure 3. Mixing layer width vs. downstream distance from the splitter obtained from the profiles of the mean 
streamwise velocity. Also shown are two sets of experimental measurements performed close to the free 

surface. 
 

 The results at z/D=0.9 were compared in Fig. 3 with two sets of measurements conducted at the free 
surface (van Prooijen and Uijttewaal, 2002) and 1 cm below the free surface (Uijttewaal and Booij, 2000). Up 
to x=2 m (30D) the mixing layer width at z/D=0.9 predicted by DES is close to the widths inferred from the two 
sets of measurements. Farther downstream, DES overpredicts the width compared to the experimental 
values. For example, at x=6 m (91D) DES predicts a width of 0.44 m, van Prooijen and Uijttewaal (2002) 
estimated a width of 0.38 m (the model equation used by the same authors to fit a smooth curve through their 
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data predicted a value of 0.4 m), and Uijttewaal and Booij (2000) estimated a width of 0.32 m. At x=10.25 m 
(155D), DES predicts a width of 0.6 m. This is quite close to the value of 0.59 m estimated by van Prooijen 
and Uijttewaal (2002). The width (0.45 m) estimated by Uijttewaal and Booij (2000) is significantly lower. It is 
not entirely clear what is the reason for the relatively significant differences between the widths estimated from 
the two experiments, but DES predictions of the streamwise variation of the mixing layer width are clearly 
closer to the data of van Prooijen and Uijttewaal (2002).  
 Furthermore, the DES mean streamwise velocity fields were used to infer the streamwise variation of the 
mixing layer width close to the bed (z/D=0.1) and the streamwise variation of the width of the depth-averaged 
mixing layer. Such quantitative information on the vertical variation of the mixing layer width was not available 
from previous experiments. The differences with the values measured at or close to the free surface are 
significant for x>0.5 m (8D). For example, at x=2 m (30D) the mixing layer widths at z/D=0.9 and 0.1 are 0.185 
m and 0.12 m, respectively, while the depth-averaged width is close to 0.16 m. At x=3.7 m, the depth 
averaged width (0.27 m) is roughly the mean of the values at z/D=0.1 (0.23 m) and z/D=0.9 (0.31). For x>4 m, 
the depth-averaged value is closer to the width measured close to the bed. This is because the width 
decreases relatively fast with the distance from the free surface in the upper layer of the channel and then 
much more gradually in the lower layer. For example, at x=10.25 m (155D) the width at z/D=0.1 (0.38 m) is 
about 30% lower than the width at z/D=0.9 (0.61 m). The width of the depth-averaged mixing layer is 0.47 m. 
The relative width reduction between z/D=0.9 and z/D=0.1 based on the velocity fields is consistent with the 
one estimated based on the mean concentration fields (e.g., see Fig. 3).  
 Figure 4 shows the power density spectrum of the spanwise velocity component at a point situated in the 
downstream part of the mixing layer (x=4.67 m), close to its centerline. A distinct -3 subrange is present at the 
low frequency side of the spanwise velocity spectrum. It indicates that in this region energy is in average 
transferred from the smaller eddies toward the larger turbulent eddies in the flow (inverse energy cascade). 
This process is responsible for the growth of the quasi 2D mixing layer eddies. By contrast, the spectrum of 
the vertical velocity (not shown) does not contain a -3 subrange and the energy at low Strouhal numbers 
(St=fD/U) corresponding to the large scales (St<0.1) is about one to two order of magnitude lower than the 
one in the spectrum for the spanwise velocity. This provides additional evidence of the fact that the large-scale 
eddies inside the mixing layer are horizontal quasi-2D eddies. A short -5/3 inertial subrange is observable for 
0.2<St<1. The limited extent of the -5/3 subrange is due to the relatively small value of the Reynolds number 
of the simulation. The peak frequency in the -3 subrange of the spectrum of the spanwise velocity fluctuations 
measured by Uijttewaal and Booij (2000) at x=5.75 m was 0.14 Hz which corresponds to St~0.042. This is in 
good agreement with the corresponding peak frequency in Fig. 4 which is St=0.037. 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 4. Power density spectra for spanwise velocity fluctuations at a point located close to the center of the 
mixing layer (z/D=0.9) and at 4.67 m from the splitter plate. 

 
Figure 5 shows the autocorrelation function of the spanwise velocity fluctuations Rvv() at two points situated 
close to the mixing layer centerline and the free surface (z/D=0.9). The streamwise distance from the splitter 
plate is 1.3 m and 10.25 m, respectively. The equation used to calculate Rvv() is 
  

																					ܴ௩௩ሺ߬ሻ ൌ
൏ ଴ݐሺ′ݒ଴ሻݐᇱሺݒ ൅ ߬ሻ ൐

ሺ൏ ଴ሻݐ2ሺ′ݒ ൐൏ ଴ݐ2ሺ′ݒ ൅ ߬ሻ ൐ሻ
																																																				ሾ2ሿ 

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print) 5063



          
 

 

 

where the brackets < > indicate averaging over all values of t0. The autocorrelation function shows the 
presence of strong modulations in time at both positions. The period of these modulations is larger at x=10.25 
m compared to x=1.32 m, which indicates the dimensions of the large-scale mixing layer eddies increases in 
the streamwise direction. The autocorrelation functions show a fast decay at small values of the displacement 
time  followed by a slow oscillatory regime. The average time delay between two successive peaks within the 
slow oscillatory regime corresponds to the time of passage of the large-scale eddies in the z/D=0.9 plane. The 
fact that the correlation is still strong after several peaks (this regime covers at least 20,000 ms based on our 
results) indicates that coherent structures passing at a certain location are fairly well correlated with respect to 
each other.  

 
 

 

 

 

 

 

 

 

 

 

Figure 5. Autocorrelation functions of spanwise velocity fluctuations in the center of the mixing layer at 1.32 m 
(20D) and 10.25 m (150D) downstream of the splitter plate. 

  
The characteristic time scale of the large-scale coherent structures estimated from Fig. 5 is 1,500 ms at 

x=1.32 m and 6,000 ms at x=10.25 m. These time scales are close to the time intervals between the first (τ=0 
ms) and the second maximum of the oscillation, that were used by Uijttewaal and Booij (2000) to infer the 
characteristic time scale of the eddies. They estimated a time scale of 1,000 ms at x=0.5 m and of 2,800 ms at 
x=2.0 m, which suggest a time scale of 1,800 ms at x~1.3 m. At x=11 m the time scale they estimated was 
close to 10,000 ms which again indicates reasonable agreement between experiment and simulation. Using 
the average convection velocity in the z/D=0.9 plane at the two streawise locations and the time scale 
associated with the passage of these eddies, one can estimate the average size of the mixing layer eddies in 
the streamwise direction. This assumes that the eddy lifetime is much larger than the passage time of the 
eddy at that location. The values predicted by DES are 0.39 m at x=1.32 m and 1.56 m at x=10.25 m. This 
average size of the eddies in the streamwise direction is expected to correlate with the mixing layer width 
(0.13 m at x=1.32 m and 0.61 m at x=10.25 m). Indeed, the ratio is between 2.5 and 3. The fact that the ratio 
is larger than one indicates that the large-scale eddies are not circular. Rather, they are elongated in the 
streamwise direction, which is consistent with visualizations of the instantaneous concentration fields (e.g., 
see Figure 2) and their temporal evolution observed in animations. 

 Finally, some preliminary results from the simulation containing large-scale roughness elements in the 
form of an array of 2D dunes are discussed. The presence of the dunes increases significantly the total bed 
friction with most of the increase due to the form or pressure drag component. Figure 6 shows the 
instantaneous concentration contours at the free surface along with the centerline inferred from the mean 
concentration contours. Several differences between the instantaneous concentration distributions in the 
z/D=0.9 plane in Figs. 2a and Fig.6 are observed. The concentration levels are lower in the case containing 
dunes. This is due to the scalar that is trapped in the recirculation region past the crest of the dunes and that 
diffuses in the spanwise direction, predominantly toward the lower speed side of the mixing layer. More 
importantly, the larger equivalent bed roughness induces a faster decrease of the entrainment coefficient 
which translates into a faster and larger shift of the mixing layer centerline (Fig. 7). For example, in the x=58D 
section, s/D=2.24 in the flat bed case and s/D=3.35 in the case with dunes. These values were obtained 
based on the mean concentration profiles. The values in the x=148D section are 4.79D and 7.16D, 
respectively. In fact, preliminary results suggested that the equivalent bed roughness is high enough such that 
the growth rate of the mixing layer, in terms of its width and centerline shift, is almost zero for x/D>130 in the 
case containing dunes (Fig. 4).  
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Figure 6. Instantaneous contours of scalar concentration for deformed bed case in a horizontal plane situated 
at 0.9D from the free surface. 

 
 

 

 

 

 

 

 

 

 

Figure 7. Variation of lateral shift of jet centreline with streamwise distance based on the analysis of flow 
fields at z/D=0.9 

 
4 CONCLUSIONS  

 DES predictions of the shallow mixing layer development close to the free surface were found to agree 
reasonably well with experimental observations. Meanwhile, the numerical results showed that the vertical 
variations of the width and centerline position of the shallow mixing layer are significant. For example, at 
distances between 75D and 150D from the splitter plate, the width of the mixing layer close to the free surface 
is 20-30% more than the width in the near-bed region.  

 Power spectra of the horizontal velocity components captured the presence of a -3 subrange at 
streamwise locations situated more than 10D from the splitter plate. This is consistent with the presence of 
large-scale quasi two-dimensional horizontal eddies and the inverse energy cascade that feeds energy into 
the quasi two-dimensional large-scale eddies. Close to the free surface, the estimated streamwise length of 
the quasi 2D mixing layer eddies is about 2.5 to 3.0 times larger than the local width of the mixing layer. The 
larger size of the quasi-2D eddies suggested by the autocorrelation function is consistent with visualizations of 
the convection of a passive scalar within the mixing layer. 

 The length of the domain was not sufficient for the mixing layer to reach the zero-growth regime in which 
the bottom friction effects become so large that the large-scale horizontal eddies cannot be sustained by the 
lateral shear and their coherence is gradually lost. The spectral properties of the turbulence within a mixing 
layer that reaches this regime due to increased bed roughness associated with the presence of 2D dunes will 
make the object of a future paper. nd numbered consecutively, as in Eq. [1]. An alternative method is given in 
Eq. [2] for long sets of equations where only one referencing equation number is wanted. 
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ABSTRACT  
  
CHRE2D is a two-dimensional hydrodynamic and sediment transport model that simulates surface flow 
routing and sediment transport using numerical solutions of shallow water equations and the kinematic or 
diffusion wave approximation. The shallow water equations are discretized by the first-order Godunov-type 
finite volume method. The stability analysis showed that the friction source term increased exponentially as 
the flow depth was very small. This breaks the balance between the friction and the slope source terms.  An 
approximate solution to the momentum equation, kinematic or diffusion wave approximation, are introduced to 
compensate this balance. This technique enables the numerical model is accurate, robust and stable for both 
very shallow overland (e.g., 10-10 m) and concentrated channel flows. The resulted CHRE2D model is capable 
of simulating both hydrological flow (e.g., surface flow routing) and hydraulic flow (e.g., dam break), which has 
not been achieved in similar commercial software, such as FLO2D, ARM2D. Additionally, the CHRE2D model 
implemented the Grass-type sediment transport formula to simulate the total sediment load in both overland 
flow and channel flow. 

 
Keywords: Computational hydraulics; CFD model; flooding; sediment transport; erosion. 

 
1 INTRODUCTION 

Surface flow consists of two parts: overland flow and channel flow (Beven, 2012; Eagleson, 1970; Ponce, 
1989). Overland flow, also called sheet flow, is the flow of a relatively thin layer of water on land surface. 
Channel flow occurs when overland flow reaches rills, gullies, ditches or rivers. The most significant difference 
between overland and channel flow is the flow depth in channel flow is much larger than that in overland flow. 
The shallow water equations (SWE) and its simplifications, i.e., the diffusion wave equations (DWE) and the 
kinematic wave equation (KWE), are often used to model the movement of surface flow (Abbott, 1979; Freeze 
and Harlan, 1969; Singh, 1996). Both the diffusion and kinematic wave equations are simplifications of the 
shallow water equations (Ferrick, 1985; Vieira, 1983). The theoretical limits and accuracies of the diffusion 
and kinematic wave equations have been extensively analyzed and discussed (Ponce, 1991; Singh, 2002).   

Modeling surface flow over watershed needs to simulate both overland and channel flow (Beven, 2012; 
Borah, 2011; Freeze and Harlan, 1969; Singh and Frevert, 2006), which often requires two separate flow 
models. In the KINEROS model (Woolhiser et al., 1990), both overland and channel flow are modeled by 
solving the kinematic wave equation so that it cannot simulate the backwater effect. As to the Systeme 
Hydrologique Europeen (SHE) model (Abbott et al., 1986), the CASCade of planes, 2-Dimensional (CASC2D) 
model (Julien et al., 1995) and the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model (Downer 
and Ogden, 2004), the diffusion wave equation is employed for both overland and channel flow simulations. 
Other watershed models similar to the ones mentioned earlier include Panday and Huyakorn (2004), Ivanov et 
al. (2004), Qu and Duffy (2007), He et al. (2008), Bates et al. (2010) and Lopez-Barrera et al. (2012). 

The CHRE2D model is a unified surface flow model based on the solutions of shallow water equations 
and the diffusion wave approximation (Yu and Duan, 2012; 2014; 2017). The expected flow depth of the 
model ranges from 10-10 m to 103 m. And, the DEM data will be directly used in the model without removing 
depressions from raw data. Besides, for the proposed model, it is not necessary to couple a channel network 
to the computational mesh. To accurately predict the effect of flood inundation, the model is capable of 
capturing the sharp front of flood wave with the minimum numerical dissipation. 

Additionally, surface flows, especially flash flood flows, usually carry a large amount of sediment that can 
induce geomorphologic changes along its path. Sediment transport module is also included in the CHRE2D 
model. For unsteady flows, spatial variations of sediment concentrations result in significant differences in the 
spatial distributions of flow densities. Since the densities are not constants but spatial functions, dam-break 
flows are often modeled by the variable density shallow water equations (VDSWEs) (Cao et al., 2004; Guan et 
al., 2014; Leighton et al., 2010; Li et al., 2013; Rosatti et al., 2008).   

To account for its hyperbolic nature, the VDSWEs is often solved by the Godunov-type finite volume 
method (LeVeque, 2002; Toro, 2009). Being different from the SWEs, flow density in the VDSWEs is an 
independent variable. This difference brings significant impacts into the VDSWEs. Brufau et al. (2000) and 
Cao et al. (2004) reformulated the VDSWEs and moved the density-related terms to the right-hand side of the 
VDSWEs. After the reformulation, the left-hand side of the VDSWEs has the same form as the SWEs, while 
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the right-hand side has two more terms than the SWEs. Cao et al. (2004) pointed out that one term represents 
the effect of spatial variation of flow density and the other term describes the momentum exchange between 
flow and bed. Since the modified VDSWEs have the same left-hand side as the SWEs, it is common to apply 
the previously well-developed Godunov-type SWEs solvers to solve the VDSWEs and to discretize the source 
terms by a central difference scheme (Cao et al., 2004; Guan et al., 2014; Li et al., 2013). 
The CHRE2D model treated sediment transport in non-equilibrium state that requires a spatial lag distance to 
reach its equilibrium concentration (Phillips and Sutherland, 1989). The model is the first that uses a well-
balanced numerical scheme to solve the original/conservative formulation of the VDSWEs in a coupled way. 
The paper will present the governing equations for both surface flow and sediment transport model, but 
neglect the numerical schemes. Selected simulation results will be compared with laboratory and field 
measurements.  

 
2 GOVERNING EQUATIONS OF SURFACE FLOW MODEL WITHOUT SEDIMENT TRANSPORT  

The governing equations are the depth-averaged Navier-Stokes equations without turbulence diffusion 
terms in the momentum equations. Those equations include mass conservation equation and two momentum 
equations are also called the shallow water equations. The mass conservation equation is:  

 

  (1) 

 
and the momentum conservation equations are: 
 

  (2) 

 
where  is the time,  and  are the spatial coordinates, respectively,  is the flow depth,  and  are 

the components of flow velocity in  and  directions, respectively,  is the rate of rainfall excess,  is 

the gravity acceleration,  and  are  and  components of bed slope, respectively,

 is the bed elevation,  is the drag coefficient,  is the Manning’s roughness coefficient, 

 is the vector of flow velocity, and  is the modulus of flow velocity. 

The shallow water equations can also be written in vectorial form as: 
 

                                                              (3) 

 
where  is the vector of conservative variables,  and  are  and  components of advective flux, 

respectively,  is the slope source term,  is the friction source term, and  is the rainfall source term. In 

addition,  is used in the paper to represent the vector of primitive variables. 
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Although extensive research has been carried out on the stability of different numerical schemes 
(positivity preserving property and well-balanced property), few study exists that adequately covers the 

stability of very thin ( ) flow, i.e., overland flow. So, a common practice is to define a 
tolerance parameter: If the flow depth is lower than the tolerance, then the cell is considered to be a dry cell 
(Begnudelli and Sanders, 2007; Cea et al., 2010; Costabile et al., 2013). In this study, a novel correction 
method is proposed in this study based on a physical approximation of the shallow water equations, i.e., the 
diffusion wave approximation (DWA). According to the theory of kinematic wave number (Vieira, 1983; 
Woolhiser and Liggett, 1967), the diffusion wave approximation becomes an accurate approximation of the 
shallow water equations as the flow depth is reduced. So, instead of updating the flow velocities by the 
momentum equations, when the flow depth is less than a threshold value (10-3 m), the flow velocities are 
updated implicitly by the diffusion wave approximation: 

 

  (4) 

 
Or Eq. (4) can be rewritten as: 
 

  (5) 

 
And 
 

  (6) 

 
Eq. (5) and (6) are velocities solved by the diffusion wave approximation. Both equations are implicit, which 
require the solutions of flow depth at  time step. Since the flow velocities are not inversely proportional 
to the flow depth now, the stability of the numerical solution is maintained by the approximation. Besides, for 
the still water situation, zero surface gradients lead to zero velocities. So, the diffusion wave approximation 
also satisfies the well-balance property. 
 
 
3 MATHEMATICAL MODEL OF VARIABLE DENSITY SEDIMENT LADEN FLOW  

In this paper, the dam-break flows are described by the variable density shallow water equations 
(VDSWEs). The system of governing equations is based on the two-phase flow assumption, i.e., the flow of 
water and sediment mixture can be treated as continuums, and both phases are moving together at the same 
velocities. The VDSWEs consist of the mass and momentum conservation equations for flow and sediment. 
For a given control volume, the bulk volume conservation equation for sediment-laden flow is written as: 

 

   (7) 
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where  is time,  and  are the spatial coordinates, respectively,  is flow depth,  and  are the 

depth-averaged flow velocities in  and  directions, respectively, and  (m/s) is the sediment flux 

between flow and mobile bed. For the sediment-laden flow, since the density of flow varies with sediment 
concentration, the mass conservation equation of sediment laden flow is expressed as: 

 

   (8) 

 

where  is the density of sediment water mixture,  is the density of saturated mobile 

bed,  is the porosity of mobile bed material,  is the density of clear water, and  is the density of 

sediment. The concentration of sediment is calculated by . The depth-averaged momentum 

conservation equations in  and  directions are given as: 

 

   (9) 

 

   (10) 

where  is the gravitational acceleration,   and   are the  and  

components of bed slope, respectively,  is the elevation of immobile bed,  is the depth of mobile bed, 

 is the drag coefficient,  is Manning’s roughness coefficient,  is the 

magnitude of flow velocity, and  is the velocity vector. 

The system of governing equations described above, i.e., Eq. (7-10), can be written in a vectorial form 
as: 

 

   (11) 

 
where  and  are the vectors of primitive variables and conservative variables, respectively: 

 

   (12) 

 

and  and  are the vectors of fluxes: 
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and , , and  are the bed slope, bed friction, and bed material source terms, 

respectively: 
 

   (14) 

 
Eq. (11) represents a system of time dependent, nonlinear hyperbolic partial differential equations. This 

system may result in sharp and discontinuous solutions even if starting from continuous initial conditions. 
When this happens, the non-conservative formulation by Cao et al. (2004) is ambiguous from the 
mathematical point of view (Cozzolino et al., 2014). 

In addition to the governing equations for the flow simulation, the evolution of mobile bed is described by 
the following conservation equation of bed material: 

 

   (15) 

The bed material flux between flow and mobile bed is evaluated by the nonequilibrium sediment transport 
formula. The formula reads: 

 

   (16) 

 

where  is the nonequilibrium adaption length of sediment transport,  is the actual flux of sediment 

transport, and  is the sediment transport capacity or the equilibrium sediment transport rate. The 

nonequilibrium adaption length denotes the spatial lag between actual sediment transport rate and its 
saturation/equilibrium rate. The calculation of adaption length is: 
 

   (17) 

 

where  is the adaption length of bed-load,  is the adaption coefficient of suspended-load, and  is the 

settling velocity of a single sediment particle. Following El Kadi Abderrezzak and Paquier (2011), 

 and  are employed in the proposed model. 

The settling velocity of sediment particle is calculated by (Cao, 1999): 
 

   (18) 

 

where  is the kinematic viscosity of water,  is the specific gravity of submerged sediment 

particle, and  is the median diameter of sediment particle. The sediment transport capacity is calculated by 

the modified Meyer-Peter-Müller (MPM) formula (El KAdi Abderrezzak and Paquier, 2011; Van Emelen et al., 
2014): 
 

   (19) 

 
where  is the Shields number,  is the friction velocity, and  is the 

critical Shields number. 
4 MODEL TEST  
 4.1Test case 1: Santa Cruz Watershed in Tucson, AZ 
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The Santa Cruz River Watershed (SCRW), located in the south-central Arizona, is a transboundary 
watershed at an elevation ranging from 668.12 to 2,845.92 m. The Santa Cruz River (SCR) is an ephemeral 
river that drains into the Gila River, a tributary to the Colorado River. The SCR flows to the south and makes 
one 40.22-kilometer loop through Mexico before re-entering the United States at nearly five miles from 
Nogales, Arizona. Then, the river flows northward to its confluence with the Gila River. The study area is the 
upper Santa Cruz River watershed encompassing the reach of the SCR within the US, approximately 4,000 
square kilometers. The largest tributary to this reach is the Rillito River in Tucson, Arizona. The topographic 
data was from the LIDAR survey in 2005 by the Pima County Regional Flood Control District. Although the 
LIDAR data has a fine grid resolution, the computational cell was obtained by aggregating the LIDAR data to 

cell. The simulation domain is approximately , so the total number of 

cells is 400,000. The simulation period was from 07/27/06 to 08/04/06 totaling 216 hours, with a peak flow of 
37,913.73 cfs occurring at Dodge blvd bridge at 6:50 AM on 07/31/06. The hourly gridded precipitation data 
with a resolution of 32 km was obtained from NLDAS (http://ldas.gsfc.nasa.gov/nldas/NLDAS2forcing.php). 
The channel transmission loss was treated similarly as the infiltration loss. Two infiltration rates are defined at 
each cell, one is for the overland flow, and the other is for the channel flow. If flow depth in a cell is greater 
than 0.1 m, the flow is considered as channel flow, and the transmission loss is calculated based on the 
conductivity of channel flow. The soil texture types in the study area are loam (92.3%) and silt (7.7%). To 
simplify the computation, the model assigned loam soil type to each cell. Loam soil consists of 40% sand, 
40% silt, and 20% clay, and the saturated hydraulic conductivity (Ks) was calibrated as 0.0162 m/hr for 
overland flow and 0.0324 m/hr for channel flow, respectively. The capillary pressure head at the wetting front, 
Hf, is set as 11.01 cm and the calibrated one is 17 cm. The soil moisture deficit, Md, is 0.29 in the model 
(Rawls et al., 1983). The Manning’s roughness coefficient is 0.03. The grid size is 100 m by 100 m. The time 
step ranges from 1.0 s, and it takes about 1.5 hours to run a 24-hour storm event. The model runs on a 12-
core DELL server. The simulated flow inundation maps at different times are shown in Figure 1. By using 
different infiltration parameters, the simulated hydrographs were compared with measurements at the Cortaro 
gauge (Figure 2).  

 

 
Figure 1. Water depth at different time (t = 6, 8, 12, 22 hours) for July 15th, 1999 flood. 
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Figure 2. Measured and simulated hydrograph at Cortaro gauge of July 15th, 1999. 

 
4.2 Test case 2: 1996 Lake Ha! Ha! catastrophic flood event 

In this part, the performance of the proposed model is tested against a field case: the 1996 Lake Ha! Ha! 
catastrophic flood event, in the Saguenay region of Quebec, Canada. A detailed description of this flood event 
and extensively documented data are provided by Capart et al. (2007). Brooks and Lawrence (1999) gave a 
detailed geomorphic description about the flood. El Kadi Abderrezzak and Paquier (2009) carried out a 1D 
numerical simulation of unsteady flow and sediment transport during this event. 

From July 18 to 21, 1996, an extreme precipitation event affected the Saguenay region of Quebec, 
Canada. At the Ha! Ha! Lake, an earthfill dyke was being overtopped by up to 0.26 m of water and a new 

outlet channel formed. Overall,  of water was estimated to have drained from the lake. The failure 
of the dyke resulted in a peak discharge of 8 times the 100-year flood. The Ha! Ha! River was severely 
damaged by the resulting flood flow (Brooks and Lawrence, 1999). 

The numerical simulation started with the digital elevation model (DEM) of the Ha! Ha! River, which was 
surveyed in May 1994 (Capart et al., 2007). The spatial data is based on the Modified Transverse Mercator 
(MTM) projection, zone 7 coordinates (NAD83). The spatial ranges of the DEM data are: 

 on the east-west direction, and . In addition 

to the DEM data, the geometry data of evenly spaced cross sections are also provided. These 363 cross 
sections spaced at 100 m interval and are oriented approximately normal to the axis of the Ha! Ha! River. 
Each cross section is identified by its streamwise distance measured from the failed dyke. In spite of abundant 
data, it has to be pointed out that the average error of the preflood riverbed elevations is estimated to be about 
2 m (El Kadi Abderrezzak and Paquier, 2009). 

Comparisons of the selected cross sections along the river are shown in Figure 3. In the longitudinal 
direction, the measured and calculated thalwegs are plotted in Figure 4. The RMSE of thalweg change is 5.3 
m, and the NRMSE is 20.18%. It is obvious that the model performed better in the longitudinal direction than 
in the cross-sectional direction. Also, the simulated thalweg profile at the middle reach is overestimated, 
especially at the 23 km from the channel mouth. According to El Kadi Abderrezzak and Paquier (2009), this 
part of the channel is controlled by outcrops of bedrocks. During the 1996 flood event, a new reach formed at 
the right floodplain and the bed was eroded up to 20 m there. The proposed model failed to predict this 
geomorphic change. 
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(a)  

(b)  
 

Figure 3. Comparison of selected measured and calculated bed cross sections. 
 

 
Figure 4. Measured and calculated thalwegs from 12 to 24 km. 

 
5 DISCUSSIONS  

For the Lake Ha! Ha! field test case, although the RMSEs of bed elevation (in meter scale) are two orders 
of magnitude greater than the laboratory cases (in centimeter scale), the NRMSEs of bed elevation (49.53% in 
horizontal direction and 20.18% in longitudinal direction) are at the same order of magnitude as the laboratory 
cases (24.68% for 1D dam-break flow case, 20.96% for 2D dam-break flow case). Since there is no 
consensus on which sediment transport equation is the most suitable for a specific river reach, an appropriate 
calibration procedure by using different bed load transport equation and varying Manning’s roughness 
coefficient is needed to reach better matches of modeling results with observations. The focus of this paper is 
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the new well-balanced numerical scheme for solving the VDSWE, this calibration procedure was not 
performed for each testing case. Nevertheless, the simulating results of bed elevation changes satisfactorily 
match both the laboratory and field observations. Therefore, the developed well balanced numerical scheme 
for solving VDSWE is proved to be a robust and accurate method for simulating dam break flow over mobile 
bed.  
 
6 CONCLUSIONS 

CHRE2D model is a robust surface flow routing and sediment transport model, which is capable of 
simulating hydrodynamics of unsteady flow, surface flow over watershed, and sediment transport processes. 
The performance of the model was verified by many laboratory and field cases. For flow simulation, the model 
predicted accurately peak flows and low hydrographs. The sediment module predicted reasonable changes of 
river cross sections and thalweg caused by a realistic dam break flow. The accuracy and simplicity of the 
proposed model, together with the robust implementation of well-balanced numerical scheme, makes this 
model suitable for practical hydraulic engineering applications. 
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