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ABSTRACT 
 
Runoff change has a great influence on the pattern of global water cycle as well as the process of migration 
and transformation of biogenic matters in drainage basin. Yarlung Zangbo River is a typical lack-data basin, 
where the quantity of available runoff data is extremely limited and the spatial and temporal resolutions are 
very low. Combining total water storage variations from five data sources (i.e., four models of Global Land 
Data Assimilation System (GLDAS), Gravity Recovery and Climate Experiment (GRACE)), precipitation and 
evapotranspiration from China meteorological data service center, runoff of Yarlung Zangbo River Basin are 
estimated by using the water balance equation. The regular of distribution, the variation trend, the continuity 
and mutability are comprehensively analyzed. And then, four statistical parameters (i.e., Correlation coefficient 
(R), Mean bias (BIAS), Standard deviation of differences (σd), and Ratio of standard deviations (σr/σobs)) are 
calculated to compare correlation and error between five data sources and in-situ measurements. At last, the 
Brunke ranking method is applied to comprehensively evaluate the data quality and applicability of the five 
data sources in Yarlung Zangbo River. The results reveal that the runoff estimated from GRACE can 
represent the runoff of Yarlung Zangbo River Basin better than other four models of GLDAS with a total 
ranking score of 2.00. This study carried out a helpful attempt on the hydrological study in lack-data basin by 
using several data source systems. In the matter of medium and long term, large and medium scale, the result 
is beneficial to deepen cognition and comprehend on the runoff characteristics of Yarlung Zangbo River, and 
settles foundation for setting up a data assimilation system, which is specifically aimed at Yarlung Zangbo 
River Basin, and then provides data, method and scientific reference for Yarlung Zangbo River Basin. 
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1 INTRODUCTION 
 Scientific management and regulation of water resource is based on the hydrologic cycle process, the 
system identification to its evolvement rule and the hydrologic forecast. In-situ observation data is a key basis 
of system identification to its evolvement rule and determines the precision of hydrologic forecast to a great 
extent (Zhao, 2009). However, there are a lot of lack-data basins in the world and the hydrologic forecast of 
these basins are facing huge difficulty and challenge. Hence, carrying out hydrological research in lack-data 
basins has great theoretical and practical significance. 

Runoff is an important component of basin water cycle. The variation of runoff is influenced by 
precipitation, evapotranspiration, temperature, underlying surface condition, and human activities (Chen and 
Zhu, 2014). Using a variety of methods to get the runoff information has important scientific significance and 
social-economic benefit to get the spatial and temporal distribution regulation of runoff variation, understand 
the hydrologic process in large and medium scale, study regional climatic variation, manage water resource, 
and predict flood and draught disaster. For the moment, there are four main methods to obtain the runoff 
information. The first is traditional land surface observation station. The second is the radar and remote 
sensing. The third is hydrological models based on meteorological and hydrologic data (i.e., GLDAS, 
Distributed Hydrologic Model, and Semi-Distributed Hydrologic Model). And, the last one is the use of GRACE 
(Zhong et al., 2009; Wahr et al., 1998; Luthcke et al., 2006). The land surface observation stations are 
distributed unevenly and a variety of internal and external conditions lead in-situ data not comprehensive. The 
radar and remote sensing can observe the surface runoff, but has low effect to sub-surface runoff. 
Meteorological and hydrologic data is not comprehensive and may affect result of distributed hydrologic model 
and semi-distributed hydrologic model. The GLDAS and GRACE are new methods to estimate total water 
storage, and combined with the water balance equation, we can easily calculate variation trend of runoff. This 
method provides new opportunity to the study of runoff. 
 At present, methods of GLDAS and GRACE to estimate total water storage have been proven in many 
basins. For instance, the Mississippi River, the Amazon River, Bay of Bengal, the Mekong River, the 
Irrawaddy River, the Nuking River, the Yangtze River, the Yellow River, the Haile River, and the Heike River 
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(Wahr et al., 2004; Yamamoto et al., 2007; Ma et al., 2011; Ni et al., 2014; Ren et al., 2013; Cao et al., 2012). 
But, study of combining GLDAS and GRACE data with meteorological data and hydrologic models to simulate 
basin runoff are seldom seen, mainly involve the Mississippi River, the Amazon River, the Columbia River, the 
Yangtze and Yellow River in China (Syed et al., 2005; Sproles et al., 2015; Ferreira et al., 2013; Qiong et al., 
2016). The results show that the basin runoff spatial and temporal distribution can be well estimated by 
combining the water balance equation with GLDAS and GRACE data. 
 Yarlung Zangbo river basin is an important international river, which has the highest mean altitude (the 
mean altitude is above 4000 m) flowing through China, India and Bangladesh. The main stream in China is 
about 2057 km and ranges from 82°01′ E to 97°06′ E and from 27°40’ N to 31°17’ N. The control basin area is 
approximately 2.58 × 105 km2, the mean stream flow is about 4.4 × 103 m³/s, and the mean annual runoff is 
about 139.54 billion m³, ranking third in China (Xu, 2013). The basin runoff variations will affect sustainable 
development of human life and social economy. Yarlung Zangbo River Basin locates on highland and cold 
area, so the in-situ observation runoff data is extremely lacking and the temporal and spatial resolutions are 
very low. Hence, in large and medium scale, and in medium and long term, study of runoff variations and 
trends by combining GLDAS and GRACE data with meteorological data to analyze the runoff temporal and 
spatial distribution is beneficial to deepen the cognition and comprehend on the runoff characteristics of 
Yarlung Zangbo River. The result settles foundation for setting up a data assimilation system, which is 
specifically aimed at Yarlung Zangbo River, and then provides data, method and scientific reference for 
Yarlung Zangbo River.  

 
2 DATA AND METHODS 

Combining total water storage variations from five data sources (i.e., four models of GLDAS, GRACE), 
precipitation and evapotranspiration from China meteorological data service center, the runoff of Yarlung 
Zangbo River Basin were estimated by using the water balance equation. The regular of distribution, the 
variation trend, the continuity and mutability were comprehensively analyzed. The result settles foundation for 
setting up a data assimilation system, which was specifically aimed at Yarlung Zangbo River, and has a great 
theoretical significance and practical value to carry out hydrologic study in lack-data basin. The corresponding 
data and methods were as follows. 
 
2.1 Data 
 
2.1.1 In-situ runoff data of Yarlung Zangbo River Basin 
 In-situ observations of runoff data from Yarlung Zangbo River Basin were extremely lacking. At present, 
we got only several years of data from Nugget, Laze, Yongcun and Nuxia gauging stations locates on main 
stream of Yarlung Zangbo River. Based on the data from GRACE (from 2002 to 2016) and GLDAS (from 1979 
to 2016), this study used in-situ runoff data of Nuxia gauging station from January 2009 to December 2013 to 
validate results. Figure 1a shows the water system map of Yarlung Zangbo River Basin. The control area of 
Yarlung Zangbo River Basin was approximately 1.9 × 105 km2 and accounts for 74.21% of total basin in China, 
which can basically capture hydrological situation of Yarlung Zangbo River Basin. Figure 1b shows monthly 
runoff (R) from 2009 to 2013 of Nuxia gauging station. 
 

 

 

                                          (a)                                                                                     (b) 
Figure 1. (a) The water system map of Yarlung Zangbo River Basin and (b) Monthly runoff(R) from 2009 to 

2013 of Nuxia gauging station. 
 
2.1.2 Precipitation and evapotranspiration data 

 In this study, meteorological data (precipitation, evapotranspiration and temperature data) were obtained 
from China meteorological data service center (http://data.cma.cn). Monthly meteorological data from January 
2009 to December 2013 of 38 meteorological stations in and near Yarlung Zangbo River Basin were 
downloaded. The 38 meteorological stations are distributed unevenly and unreasonably because of the limit of 
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manpower, resource and natural environment. Hence, to get mean values of Yarlung Zangbo River Basin, 
related measures should be taken. 

With the help of ArcGIS, Thiessen polygon method is used to calculate mean precipitation of a basin, 
which can be expressed in terms of the equation (1) as follows: 
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where p1，p2，……，pn is the precipitation of every single meteorological station, f1，f2，……，fn is the area 
of every single meteorological station, and F is the area of the whole basin.   

To calculate the mean evapotranspiration of a basin, this study adopts a traditional but high precision 
method called Takahashi formula. The equation is as follows (Xu, 2013): 
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where P is the monthly mean precipitation and T is the monthly mean temperature.  
 
2.1.3 Computation of the total water storage(TWS) from GRACE 
 GRACE was developed jointly by NASA and DLR. Two satellites were launched in March 17th, 2002 in 
Russia. The mission is aimed at obtaining high precision medium-long wave of static earth gravitational field 
and determining the time variation characteristics for 15 to 30 days or even longer temporal scale of the earth 
gravitational field. The GRACE datasets are published by CSR (Center for Space Research, University of 
Texas at Austin), GFZ (German Research Center of Geo sciences) and JPL (Jet Propulsion Laboratories). We 
can get fully normalized spherical harmonic coefficients, 

lmC and 
lmS , from their official website. Gravity 

potential and earth surface anomaly of every spatial domain can be calculated (Cao et al., 2011). The GRACE 
satellite mission has provided continuous satellite-based gravity data of the earth for nearly 14 years and has 
made a great contribution to Geophysics, Geodesy, Space science and Hydrology. The GRACE satellite can 
monitor high-precision hydrological signals, which has been widely studied and applied in mass balance of ice 
cover in polar region, mass balance of glacier in high mountains, variation of global sea level and the variation 
of terrestrial water storage. 
 In this study, 60 monthly average stokes coefficients from January 2009 to December 2013 are used, 
provided by RL-05 level-2 solutions from Screech monthly gravity field consists of fully normalized spherical 
harmonic coefficients, 

lmC and 
lmS , to degree and order of 60. By using MATLAB, the total water storage can 

be successfully estimated by equivalently transform time variable earth gravity field which monitored by 
GRACE satellite to quality variations of earth surface, and then divide water density (Tapley et al., 2004). The 
calculation model is as follows (Wang, 2010): 
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where l and m are the degree and order of spherical harmonics, respectively, R is the radius of the earth, 

ave  is the mean quality of earth, w  is the density of water, θ and φ are the co-latitude and longitude, 

respectively, Kl is the load love of l  degree, r is the filtering radius, Wl is the smoothing kernel related to 

degree respectively, Plm is the Legendre functions, and 
lmC and lmS  are the variations of Stokes coefficients, 

respectively. 
 
2.1.4 Computation of the total water-storage(TWS) from GLDAS 
 GLDAS is an off-line global land simulating system, which was developed jointly by GSFC of NASA and 
NCEP of NOAA. It coalesces the data both from land surface and satellite, and provides optimized land 
surface real-time state variable (Rodell et al., 2004; Wang. et al., 2013). GLDAS contains three land models 
called CLM, Noah and MOS, and one hydrology model called VIC. The four models provide 28 land surface 
process parameters (e.g., soil moisture, surface temperature, snow water equivalent, surface and sub-surface 
runoff) from 1979 till now. The spatial resolution is 0.25°×0.25°and 1°×1° and the temporal resolution is 3 
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hours and 1 month (Hua, 2013). In this study, we used all the four models of GLDAS to provide monthly 
parameters of soil moisture and snow water equivalent with version-1 1.0° spatial resolution. The total water 
storage can be represented by soil moisture plus snow water equivalent (Xu, 2013). 
 
2.2 Methods 
 
2.2.1 Water balance equation 
 To estimate the monthly total runoff (both from surface and sub-surface) of Yarlung Zangbo River Basin, 
we used the water balance equation. Figure 2 is a schematic diagram for the water balance equation. Based 
on the monthly precipitation, evapotranspiration and variation of total water storage, we can estimate the 
runoff values and analyze the change rules of runoff during study period. The water balance equation is as 
follows: 
 

 P(t)—ET(t)—R(t)=∆S(t) [4] 

 
where P is the areal mean rate of precipitation, ET is the areal mean rate of evapotranspiration, R is the total 
basin runoff, ∆S is the total water storage variations of a basin, and t is the time. 

The S estimated from GRACE Spherical Harmonic solutions were converted into the anomaly with 
respect to a mean gravity field of a selected period, called total water storage (TWS). In this study, while 
estimating the GRACE-based R(t) by water balance equation, the ∆S (t) is referred to a monthly scale value, 
called terrestrial water storage variations (TWSV). We used a brief and efficient way to calculate the TWSV 
following the method provided in Ramillien et al. (Ramillien et al., 2006). The TWSV can be denoted as: 
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Figure 2. A schematic diagram for the water balance equation. 

 
2.2.2 Data comparison and applicability analysis 
 The study calculates the total runoff of Yarlung Zangbo river basin by estimating GRACE and four 
models of GLDAS (CLM, Noah, MOS, and VIC) products. To analyze applicability of the five runoff products 
quantitatively, this paper compares these results with in-situ runoff data by four statistical quantities, (i.e., 
correlation coefficient (R), mean bias (BIAS), standard deviation of differences (σd), and ratio of standard 
deviations (σr/ σobs)). The equations of each statistical quantity are as follows (Wei, 2007): 
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where MI is the runoff data calculated from four models of GLDAS and CSR of GRACE, Oi is in-situ runoff data 

of Wuxia gauging station, M is the mean runoff data of study period from four models of GLDAS and CSR of 

GRACE, O is the mean runoff data of study period from in-situ runoff data of Wuxia gauging station, and N is 
the quantity of month during the study period. 
 The Brunke ranking method (Brunke et al., 2003) is applied to quantify the relative performance of the 
five datasets for each variable and statistical quantity. The method can comprehensively estimate quality and 
applicability of these five datasets of Yarlung Zangbo River Basin. 
 
3 RESULTS AND DISSCUSSION 
 
3.1 Precipitation and Evapotranspiration over Yarlung Zangbo River Basin 
 Based on the precipitation, evapotranspiration and temperature data from meteorological stations in and 
near Yarlung Zangbo river basin, the monthly mean precipitation and evapotranspiration during study period 
can be calculated by Thiessen polygon method and Takahashi formula. Figure 3a and 3b show the variation 
trends of monthly precipitation and evapotranspiration of Yarlung Zangbo River Resin from January 2009 to 
December 2013. The results show that the monthly mean precipitation and evapotranspiration both have 
obvious seasonal variability and the variation trends are relatively consistent. For precipitation, the monthly 
mean maximum values were common in July or August every year, whereas the minimum values were 
common in November, December and January every year. During the study period, the precipitation of July 
2011 had a maximum value of 136.62 mm and the precipitation of December 2011 has a minimum value of 
0.59 mm. For evapotranspiration, the monthly mean maximum values were common in July every year and 
July 2010 had a maximum value of 55.34 mm. The minimum values were common in December and January 
every year, and the evapotranspiration of December 2011 had a minimum value of 0.59 mm. 
 

  
                                               (a)                                                                                                  (b) 

Figure 3. Monthly precipitation and evapotranspiration of Yarlung Zangbo River Basin. 
  
3.2 The TWSA over the Yarlung Zangbo River Basin  

The results presented in Figure 4 show the process of total water storage anomaly calculated from four 
models of GLDAS (Mos, Noah, VIC, and CLM) and CSR version of GRACE. The results show similar 
fluctuations and all five results have significant seasonal variability in the study region. The total water storage 
trend of four models of GLDAS are in good agreement. Every year, the lowest TWS from GLDAS usually 
appear in August and September, whereas the highest TWS from GLDAS usually appear in March and April. 
However, TWSA calculated from GRACE has certain hysteresis. The lowest TWSA from GRACE usually 
appear around April, while the highest TWS from GRACE usually appear around August. The reason for this 
hysteresis is that the result of GRACE presented is a stable TWSA after a series of complex process, namely 
surface runoff, evapotranspiration, permeate, and sub-surface runoff. But, the result of GLDAS presented is 
not a stable TWSA as it has a link of infiltration (Liao, 2015). After linear fitting TWS during the study period, it 
was found that the four models of GLDAS indicate a persistent decreasing trend. TWSA declined 42 mm 
annually under GLDAS-MOS model, 33 mm under GLDAS-Noah model, 29 mm under GLDAS-VIC model, 
and declined 18 mm yearly under GLDAS-CLM model. However, TWSA of GRACE during the study period 
has a relative stable condition where the trend only has a slight rise. 
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 Figure 4. Monthly TWSA from GRACE and the 4 models of GLDAS. 

 
3.3 Total runoff over Yarlung Zangbo River Basin 

The total basin runoff can be estimated from the water balance equation while the basin is considered as 
a closed drainage system (Li et al., 2016). Yarlung Zangbo River Basin originates in northeast of Tibet Plateau 
and the snow melting in this area makes it one of the main runoff formation areas. Therefore, while calculating 
the runoff of the whole Yarlung Zangbo River basin, the snow melting from the river source should be 
considered. The Nugesha gauging station (NGS) is a control hydrological station on the Yarlung Zangbo River 
source and its catchment area is 1.06 ×105 km2. The runoff observed in NGS station partly represents the total 
runoff deduced by regional precipitation and snow melting. Thus, the runoff over Yarlung Zangbo River basin 
can be calculated as: 

 

 
2

1)-TWSV(t-1)TWSV(t
=R(t)—ET(t)—P(t)+(t)R NGS

    [10] 

 
Figure 5 presents the time series of runoff based on GRACE, four models of GLDAS (Mos, Noah, VIC, 

and CLM), and in-situ runoff of Nuxia gauging station. It can be seen from Figure 5 that the total runoff from 
five data source systems have similar fluctuations and significant seasonal variability in the study region as 
compared to the in-situ runoff of Nuxia gauging station. But, there were also some differences. The amplitudes 
of each runoff of GLDAS model are higher than the GRACE-based runoff. As for the limit values, the total 
runoff of four models of GLDAS (Mos, Noah, VIC, and CLM) are in good agreement. Every year, the lowest 
monthly runoff usually appears around November, whereas the highest monthly runoff usually appears in July 
and August. However, the lowest runoff from GRACE usually appears around June, while the highest runoff 
from GRACE usually appears in August and September. For in-situ runoff of Nuxia gauging station, the lowest 
runoff usually appears around February, whereas the highest runoff usually appears around August. The 
GRACE-based runoff data may have a more similar variation trend to the in-situ runoff data. 

 

 

Figure 5. Monthly runoff from GLDAS, GRACE, and in-situ runoff of Nuxia gauging station. 
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3.4 Data comparison and applicability analysis 
 Using the Brunke ranking method (Liu et al., 2015), we can rank the five datasets from 1 to n (n presents 
the total number of datasets). If BIAS is the least (or σd is the least, or R is the largest), the ranking will be one. 
If BIAS is the largest (or σd is the largest, or R is the least), the ranking will be n. For σr/σobs, the value closest 
to 1 will be ranked one and the value that is the most furthest from one will be ranked n. At last, calculate 
arithmetic mean of each dataset from four statistical quantities rankings. We will then get the total ranking 
scores of these datasets. 

Figure 7 present the correlation coefficient (R), mean bias (BIAS), standard deviation of differences (σd), 
and ratio of standard derivations (σr / σobs) between four models of GLDAS (MOS, Noah, VIC, and CLM), 
GRACE, and in-situ observations. Table 1 presents the average ranking scores of runoff data from four 
models of GLDAS and GRACE products. It can be seen from Figure 6 and Figure 7 that the correlation 
coefficient (R) between five datasets with in-situ runoff data have medium correlation, and R values are 
0.76 ,0.73, 0.74, 0.60, 0.49, respectively. Products based GRACE has the lowest R as compared to in-situ 
runoff data. Based on the Brunke ranking method, the ranking score of GRACE is 5. It is the worst result. But, 
it was found that the products based GRACE have the best results in terms of mean bias (BIAS), standard 
deviation of differences (σd), and ratio of standard derivations (σr/σobs). According to the Brunke ranking 
method, the ranking scores of GRACE all are 1. From total ranking scores, it can be concluded that the runoff 
data based on GRACE is closer to in-situ runoff data of Nuxia gauging station than other four models of 
GLDAS. The results reveal the outcomes in Figure 5. 

 
 
 
 
 
 
 
 
 
 
 
                                         (a)                                                                            (b)     
            
 
 

 
 
 
 
 
 
                                                (c)                                                                            (d)     
                                   
 
 
 
 
 
 
 
 

(e) 
                         

Figure 6. R between runoff data based GLDAS and GRACE with in-situ runoff data. 
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                                                (a)                                                                            (b)     
 
 
 
 

 
 
 
 
 
 

        (c)                                                                            (d)     
Figure 7. The correlation coefficient (R), mean bias (BIAS), standard deviation of differences (σd),  

ratio of standard derivations (σr/σobs) of GLDAS, GRACE, and in-situ observations. 
 

Table 1. The average ranking scores of runoff data from four models of GLDAS and GRACE products. 
Name GLDAS-MOS GLDAS-NOAH GLDAS-VIC GLDAS-CLM GRACE 

R 1 3 2 4 5 

BIAS 5 4 3 2 1 

σd 4 2 5 3 1 

σr/σobs 5 3 4 2 1 

Total ranking scores 3.75 3.00 3.50 2.75 2.00 

 
4 CONCLUSIONS 
 In this paper, we calculate the total runoff of the Yarlung Zangbo River Basin on a monthly time scale 
from February 2009 to December 2013 based on the water balance equation. Combining the total water 
storage (TWS) variations estimated from Gravity Recovery and Climate Experiment (GRACE), four models of 
Global Land Data Assimilation System (GLDAS), precipitation and evapotranspiration data calculated from 
Thiessen polygon and Takahashi formula, and in-situ runoff data, the total runoff over the Yellow River Basin 
are estimated. To analyze the applicability of runoff in five datasets, four statistical parameters (i.e., 
Correlation coefficient (R), mean bias (BIAS), standard deviation of differences (σd), and ratio of standard 
deviations (σr/ σobs)) are calculated. And, the Brunke ranking method is applied to quantify the relative 
performance of the five datasets for each variable and statistical quantity. 
 Based on the results of comparison with in-situ runoff data of Nuxia gauging station, it can be concluded 
that the runoff data from four models of GLDAS can partially represent the runoff over the Yarlung Zangbo 
River Basin. The runoff data based on GRACE is closer to in-situ runoff data of Nuxia gauging station than 
other four models of GLDAS. 
 In conclusion, the Yarlung Zangbo River is a typical lack-data basin, where the quantity of available 
runoff data is extremely limited and the spatial and temporal resolutions are very low. The method we used 
can comprehensively estimate the quality and applicability of these five data sources of Yarlung Zangbo River 
Basin. The result settles foundation for setting up a data assimilation system, which is specifically aimed at 
Yarlung Zangbo River, and then provides data, method and scientific reference for Yarlung Zangbo River. We 
believe that the results will help to understand the global water cycle. 
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ABSTRACT 
 
Developing countries face special challenges in water resource management including lack of environmental 
policies, technological gap, limited community involvement and demographic movement. The present research 
addresses an engineering component and a public policy component related to surface water and challenges due to 
the uncertainties of its flow in watercourses.  A mathematical model is developed to illustrate the uncertainty in 
surface flow and the need for the statistical rather than deterministic approaches to account for the variability in 
its parameters. Upgrades in commonly used formulations are necessary to accommodate the peculiarities of 
medium to small streams. A second mathematical model is developed to analyze the empirical data for water 
policy recommendations. Field data was collected in Byblos County, Lebanon, in the East Mediterranean, which 
is endowed with high precipitation rates as compared to the region and yet, suffering from water shortage. In a 
multivariate linear regression analysis, a dependent variable was defined as the sustainability of surface water as 
a primary source of supply. Three independent variables were defined as X1, the reliability of projections for 
surface flow given its uncertainty, X2, the effectiveness of establishing a multi-decade surface water management 
program, and X3, the effectiveness of transitioning to groundwater for processing and end-use. Results show that 
the first variable is statistically significant but negatively correlated, while the second and third variables are 
statistically significant and positively correlated.  In addition, the secondary data confirms a continuous movement 
from rural to urban areas. Based on those results, it is recommended that a national water resource management 
plan is established with an environmentally sustainable multi-decade implementation program. The program needs 
to be intimately linked to the environmental protection policies that are starting to be applied in the country.  
 
Keywords: Sustainable water resource management; surface watercourses flow; surface water policies; 

groundwater transition. 
 
 
1 INTRODUCTION 

In natural resource management, surface water is one of the most important components of the water cycle 
as it is supposed to offer the simplicity and accessibility as compared to subsurface fresh water or other sources 
(Lenton and Muller, 2009; Pidwirny, 2006).  Yet, it has been an enduring concern that surface water suffers from 
mismanagement especially in developing countries (Turall, 1997; Grigg, 2002).  For instance, in the Levant 
mountains of Lebanon, over 80% of surface water goes back to the Mediterranean without proper use (El-Fadel 
et al., 2000; Makdisi, 2007). 

Surface water issues are numerous and are not only typical of developing countries as many developed 
countries face scarcity and have the need to establish environmental friendly and sustainable solutions to water 
demand (EPRI, 2009; Dourojeanni, 2001). Uncertainty is due to many factors especially the variability in 
precipitation, river flows, and air temperature. This makes the study of uncertainty even more important because 
it affects the physical phenomena as well as the decision making of policy (Grigg, 2016). 

Water supply in most policy frameworks is carried out within a deterministic framework instead of a 
probabilistic methodology (Boucher et al. 2012). As such, boundary or reference values are set for inputs 
including the best estimates or the worst case scenarios are used as the key parameters, such as population 
growth, river flow, and local water demand (Wilks, 2006). Sources of uncertainty for water supply in this case 
are addressed only qualitatively in prioritizing solutions for decision making. Planning under uncertainty, on the 
other hand, improves the reliability of estimates and ensures that the results are neither overly conservative nor 
overly optimistic (Zhao et al., 2012). 

Uncertainty in surface water affects groundwater and the dynamic interaction between the availability of 
groundwater and surface water supply poses additional challenges in simulating water resources (Yen and 
Riggins, 1991; Sophocleus, 2002).  It is a common practice that simplified assumptions are made to reach a 
workable mathematical model. The uncertainty of surface water sources includes precipitation, physical 
processes, variability in river flows, and human use or interventions.  Meanwhile, the uncertainty of groundwater 
sources includes dimensional effects in terms of natural reservoir, boundary conditions and associated recharge 
rates. River flows and aquifer are linked through a natural process but can also be actively managed if planned 
based on the consumption and demand. Water transfers to the stream if the aquifer level is greater than that of 
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the stream and vice versa (Sophocleus, 2002). For that purpose, simulations such as Monte Carlo were applied 
to model surface-subsurface water interaction. Monte Carlo techniques require simplifying the assumptions but 
maintain the probabilistic nature of the input parameters (Peck et al., 1988). 
 
2 FROM ENGINEERING TO PUBLIC SECTOR APPLICATIONS: NEED FOR UNCERTAINTYANALYSIS 

Knowledge about the close and continuous interaction between the surface and ground water is not new, 
and the extraction of underground water is not a novel approach to public management in meeting the demand 
of communities. Over 3000 years ago, wells were dug in an inclined manner to compensate for drought and 
scarcity in surface water. Greeks and Romans had their share in executing works in ground water extraction 
and distribution to serve communities under public management (Baker and Horton, 1936; Todd and Mays, 
2005). In Arabia, Qanats, or channels, were dug to extract ground water and distribute to districts (Lightfoot, 
2000). Supported by the government, research on groundwater flourished in France in the 1600s and was 
extended in later centuries to address infiltration theory, the hydrologic cycle, and the mathematical modeling 
of seepage in soil media (Biswas, 1970). Darcy presented work on the water seepage in soil media, which 
became the basis of many computational packages used in our current days in analyzing subsurface water flow 
(Todd and Mays, 2005).   

Between the 1950s and the 1980s, computational trends moved from the traditional water cycle studies to 
a decision support from the demand side, rather than studying the supply side (Thornthwaite and Mather, 1957, 
Burnash et al., 1973). The trend was also driven by concerning the global climate change (Nemec and Schaake, 
1982; Gleick, 1987). As climate change gained priority on policy-makers agendas, the interest in turning to 
groundwater as a source of supply and its interaction with surface water was on the rise. In 1995, the United 
States Geologic Survey published data about the groundwater extraction reaching over 400,000 million gallons 
per day within the United States, accompanying an expansion between the 1940s and the 1990s in agricultural 
applications, automation of irrigation and cattle cleaning systems (Todd and Mays, 2005). The accelerated 
development in analysis tools and techniques for surface and subsurface water flow was supported by 
advancing in high speed computing technologies, but still, the main driver behind such analyses was the rising 
concern and increased the research interest on global environmental issues and climate change (EPRI, 2009, 
Salman and Bradlow, 2006). With the boom in computational techniques for water cycle studies, it was apparent 
that the accuracy in providing estimates required for the decision making of public sector would still benefit from 
a better handle in handling uncertainty in input parameters. As such, there is a need to mathematically and 
systematically account for uncertainty in models to set the reasonable expectations when an engineering 
analysis is presented to policy makers (Stave, 2002; Loucks and Van Beek, 2005). 
 
3 DETERMINISTIC VERSUS STOCHASTIC WATER RESOURCE ESTIMATES 

Communicating results with public decision makers and local communities would be more realistic, if 
uncertainty is properly included (Montanari, 2007). Setting expectations using uncertainty analysis would offer 
a more credible view on the river flow parameters than deterministic approaches (Beven, 2006). This becomes 
particularly important in basins where there is no direct measurement and hence, the mathematical models are 
critical in providing a relatively accurate means of extrapolating or interpolating field data results (Sivapalan et 
al., 2003). 

There are many sources of uncertainty that we shall categorize as global, related to the general 
environment or pertaining to the major long term events such as climate change, and local, pertaining to specific 
regions and the characteristics of surface water in a restrained environment. Research on global issues such 
as potential greenhouse effect on the regional water resources addressed predictions for the twenty first century 
(Arnell and Reynard, 1993; 1996). Some use a general circulation model (GCM) to provide the climatic model 
inputs and study their effects on water resources (WMO, 1997). These sources of uncertainty buildup in the 
modeling process and provide a divergence in the final result. Goetzinger and Bardossy categorize the sources 
of uncertainty in three different groups pertaining to colleting observations, selecting parameters, and 
developing the mathematical model. They argue that the source of divergence is due to the parameter selection 
and mathematical modeling assumptions more so than from observations. It was confirmed that the uncertainty 
due to observation has less significant effects than the parameter selection and modeling (Goetzinger and 
Bardossy, 2008). 

For example, if we consider the uncertainty related to the river discharge using the velocity-area method, 
with the relationship of Q (s, t) = A (s, t). v (s, t), where Q is the discharge, A is the cross-sectional area, and v 
is the average velocity over the cross-section. All quantities vary as a function of location along the river bed, 
and time. In a deterministic mode, the quantities require to define a priori and the relationship becomes a simple 
multiplication. However, if uncertainty is accounted for all three quantities, Q, A, and v would be represented by 
a probability distribution of a given shape. A common shape used is the Gaussian distribution (Peck et al., 
1988). The relationship is hence the one between three Gaussian curves rather than three simple parameters 
(Chalhoub and Jenkins, 1994). Uncertainty in the area and velocity propagates in the flow values. Clearly, the 
area cannot be exactly computed and the velocity may vary over the cross section. As far back as the 1980s, 
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researchers showed that depending on the number of sampling points where velocity is measured, the river 
discharge can vary between 8% and 20% with 95% confidence level (Pelletier, 1987).   

Unsteady flow conditions induce uncertainty as well. This is particularly accentuated when the bed is weedy 
and does not lend itself to a single roughness value (Dottori et al., 2009). The roughness affects the values of 
flow in a one-on-one relationship due to the roughness coefficient presents in the denominator of the expression 
for Q.  The roughness depends on the status of the vegetation, and that in turn, is affected by the season 
(Franchini et al., 1999). There have been diverging views as to whether the rating curves can be extrapolated 
beyond a certain range (Rantz et al., 1982; Pappenberger et al., 2006).  It is therefore important to quantify the 
uncertainty in river flow, and the river flow data collected in the field, as part of hydrological processes (Montanari 
and Grossi, 2008). 
 
4     ENGINEERING MATHEMATICAL MODEL OF SURFACE WATER IN OPEN CHANNELS 
 
4.1   Limitations of common river-flow formulas 

Open channel formulations are used to model surface water flowing in watercourses by simplifying the 
assumptions about the shape of the section, the roughness of the river bed, and the water particle velocity 
distribution (French, 1985). The shape of the channel cross-section is often over-simplified and modeled as a 
rectangular or trapezoidal shape. This approach may work for engineered canals built in a controlled 

 

Figure 1a. Natural cross-section. 
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Figure 1b. Stylized cross-section. 

Figure 1c. Mathematical cross-sectional model. 
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environment, but results diverge from the reality when the shape is a natural result of water flow, erosion, and 
sediment transport. In the field, a large variation occurs in channel sectional shapes as you move along the 
longitudinal axis of the watercourse. The cross-sectional shape also varies in time depending on the season 
whereby water may occupy the middle section or may overflow across the river banks. The cross section is 
therefore a variable and a function of both time and space (Chalhoub, 2013). 

River bed gradient has a high variability in most mountainous countries. In Lebanon, for example, all major 
rivers start with small waterways, streams and creeks in steep mountains overlooking the Mediterranean where 
the flow drastically decreases or disappears in summer and outbursts in winter and spring as snow melts. Weeds 
grow abundantly in the spring and cause significant changes in the river bed roughness coefficient, a parameter 
that is typically assumed constant in open channel flow problems (Chalhoub, 2013).  In addition to vegetation, 
river beds typically contain boulders, large stones, and algae growth (Yalin, 1992).  The majority of the 
mathematical models for open channels make plain assumptions about the steady-state behavior while they do 
not apply in areas of seasonal watercourses that may take several weeks to saturate the river bed before they 
appear above grade. The wavering nature of the river course also contributes to the divergence between the 
simplified formulae results and real life behavior. On a river bent, the water surface will take an inclined shape 
to compensate for the centrifuge force. As a result, the water depth would be larger on the outer side of the river 
bent than it would be on the inner side (Chalhoub, 2013). 

The variations discussed above are better modeled with the stochastic parameters rather than 
deterministic. For this reason, accounting for uncertainty leads to better results and more reliable reporting, 
which in turn offer a more reasonable platform for policy decision making. We therefore propose that the 
roughness coefficient, denoted by n, should not be assumed to be constant for a given river bed material as 
tabulated in most open channel flow literature (Manning, 1891). The roughness coefficient will vary significantly 
with the geometry of the section, bents and the flow rate of an open channel (Chalhoub, 2013). 
 
4.2  Mathematical modeling of roughness-flow rate interaction 

The hydraulic radius, R is defined as the ratio of the cross-sectional area (A) to the wetted perimeter (P): 
 
                                                                   ܴ ൌ  ሾ1ሿ																																																							ܲ	/	ܣ			
 

However, in natural watercourses or small rivers, the cross-sectional shape is seldom rectangular or 
trapezoidal. The area, the wetted perimeter, and the roughness coefficient change with the flow depth, which in 
turn depends on the season. During low season, the water flow is limited to the deeper middle section while in 
the high season, the river banks carry an additional flow (Figure 1a). The natural cross section can be stylized 
by breaking it down into simple geometric shapes, as shown by the dashed line overlaid on the cross section 
(Finnemore and Franzini, 2009). The total flow is computed as the sum of the sub-flows in each sub-section 
respectively (Figure 1b and 1c). Since the free water surface could be located at any depth depending on the 
season and the precipitation, a threshold is defined to separate low season flow from high season flow that 
corresponds to different roughness coefficients (Figure 1c). Manning coefficients may vary from n3 around 0.033 
for a well-charted relatively smooth natural stream bed up to n1 or n5 in the range of 0.15 for a weedy river bank, 
which is more than four times the resistance to water flow. The mathematical cross-sectional model is obtained 
by breaking down the flow into components where we can compute Ai, Pi, and Ri, with a corresponding ni so 
that the flow can be computed as: 
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																																																				ሾ2ሿ 

 
where C is a constant in the Manning equation that accounts for the system of units (e.g. C = 1.486 for a 
numerical application in US Customary units) and S is the slope at that particular location of the cross section. 
The hydraulic radius and the slope are raised to the power p and r, respectively. Through experiments, Manning 
concluded that for simple channel sections, which is the case of sub-sections where i=1, …, 5, p could be taken 
as 2/3 and r as 1/2, respectively, with a reasonable agreement with scaled laboratory tests (Manning, 1891). 

A numerical application was performed for a small river in Byblos County in Mount Lebanon that has a total 
river bed width ranging between 14 m and 20 m in the vicinity of the station used to measure flow velocity. 
During high season in 2016, the flow velocity measured between 0.85 and 1.1 m/s. The average high season 
water depth, away from the boulders and large depressions in its bed, was about 1.5 m. In the mathematical 
model, a 16 m river section width was used and was subdivided into 0.5 m, 2 m, 10 m, 2.5 m, and 1 m segments 
of horizontal projection for sections A1, A2, A3, A4, and A5, respectively.  A total water depth of 1.5 m was used 
in the middle section corresponding to A3 and 0.5 m depth in the banks. The Manning coefficient was selected 
for each subsection independently whereby for the outer weedy sections 0.075 ≤ n1 = n5 ≤ 0.15, for the river 
banks near the main bed, 0.045 ≤ n2 = n4 ≤ 0.06, and for the main bed 0.025 ≤ n3 ≤ 0.033. The results are 
summarized in Table 1. 
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Table 1.  Results from the subsection mathematical model. 

Subsection 1 2 3 4 5 Total 
ni-min 0.075 0.045 0.025 0.045 0.075 - 
ni-max 0.150 0.060 0.033 0.060 0.150 - 
Qi-min  (m3/s)   0.0069   0.2780  13.9550   0.0750   0.0163 14.33 
Qi-max  (m3/s)   0.0139   0.3700  18.4210   0.1010   0.0325 18.94 
 ሺܳሻ   0.0097   0.3199   15.9939   0.0868   0.0163 16.43		ߤ
 - ሺܳሻ   0.0021   0.0290     1.3974   0.0079   0.0050	ߪ

 
A second model based on a Gaussian distribution was used to compute the flow directly on the totality of 

the cross section without going through the subdivisions. The Manning coefficient mean value and standard 
deviation were found to be ߤ	ሺ݊ሻ 	ൌ 		0.029 and ߪ	ሺ݊ሻ ൌ 		0.0025, respectively. The range for possible values of 
n was computed as ሼ݊௞ሽ ൌ ሺ݊ሻ	ߤ		 	േ  ሺ݊ሻ, hence covering 95% of the probability distribution. The total flow	ߪ		2		
was computed, its mean value and standard deviation were found to be ߤ	ሺܳሻ ൌ 14.7	݉ଷ/ݏ  and ߪ	ሺܳሻ ൌ
1.63	݉ଷ/ݏ, respectively. This provides a range for possible values of total flow. If two standard deviations are 
used to cover 95% of the probability density, then Q would range between 11.44 m3/s and 17.96 m3/s. 

Note that the results above from the two models are in the same range. However, the second model 
provides more reasonable values and takes into consideration the range that Q would cover based on the 
variability in bed roughness. Furthermore, the second model involved lesser parameters as it performs the 
analysis on the full section without subdividing it. 
 
4.3   Mathematical modeling of roughness- water depth-flow rate interaction 

The following modeling includes the variability in water flow depth, which would depend on the season. 
This is particularly critical in accounting for the uncertainty in flow given the wide fluctuations in precipitations 
from season to season. Considering Q as the total flow rate, as expressed in Equation [3] as a function of river 
cross sectional area (A), its hydraulic radius (Rh), the river bed slope (S), and the roughness coefficient (n), with 
power exponents (p and r) applied to Rh  and S respectively: 
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In the following derivation, we consider p and r in their general form, and n as a function of depth y.  Denoting 
by w as the river width, expression [3] is rewritten as: 
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If we consider two streams of same width and carrying the same discharge, the variation in n(y) is the partial 
derivative of n with respect to y: 
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where we define ܭ௪,ொ as a function of river width and average flow. We make a first observation that small 
watercourses are typically shallow as one can observe the wavy effects exerted by the river bottom on the water 
free surface. The second observation was discussed earlier in that watercourses have variable bed geometry 
at any given control section, and that they are seasonal with a low flow or a dry river bed when off season. The 
third observation is that watercourses contain repeated bents along their flow line. The modeling of bents 
involves centrifuge forces that result in a rise in water surface on the outer side of the bent.  This effect is outside 
the scope here and is treated in a separate working paper (Chalhoub, 2016). Numerical results from Eqs. [4] 
and [5] show that it is necessary to use the correction factors in computing watercourse flows, and that classical 
open channel theories, while they apply to less rugged open channel beds, fall short of representing the field 
behavior of such streams (Chalhoub, 2016). Introducing a function, ݂	ሺ߲݊ ⁄ሻݕ߲ , accounting for the simplifications 
defined above and the simplifications performed on the gradient of n, we integrate over the depth of the river to 
obtain the adjusted roughness coefficient, n*. 
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The adjustment factor on n is represented as a function of the flow depth for a given bed width. For a 
channel width, w = 20 m in the simulation model, n should be adjusted by 10% for a flow depth of 2 m, and by 
35% for a flow depth of 0.10 m. The percentage by which n needs to be adjusted is a corrective factor that is 
expected to be higher as the depth gets lower. The mathematical model results are in reasonable agreement 
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with field observations. For a small watercourse, given the same bed roughness and geometry, a deep water 
flow in the range of 2 m would have to overcome a lower frictional resistance than shallow waters flowing in the 
depth range of 0.1 to 0.2 m. Results are illustrated in Figure 2. 

The adjustment derived here is also in agreement with the pipe flow theories that define e/D, where e is 
the irregularity or roughness on the interior surface of the pipe and D is the interior pipe diameter. Another 
simulation for a river width of 19 m and the flow depth varying between 0.05 m and 3 m was performed and 
similar conclusions were reached. Adjustments to n in this case ranged between 9% and 37%. 

In light of the results above, the mathematical model can be rewritten in a simplified format by defining an 
exponential function for the case of w = 20 m and a depth varying between 0.05 m and 2 m. At a particular 
control section along the river reach, the adjustment over n is rewritten as a function of depth: 
 

∆݊	ሺ%ሻ
100

	ൌ 		0.3484	݁ି	଴.ହଵ଼	ௗ																																																														ሾ7ሿ 

 
where d is the flow depth in meters and ∆݊	ሺ%ሻ is the adjustment percentage. Expression [7] could be used for 
close values of the river bed width and still yield reasonable estimates within the field-related error margins. An 

exponential function for w = 19 m was also developed and found to be  
∆௡	ሺ%ሻ

ଵ଴଴
	ൌ 		0.3893	݁ି	଴.ସ଺	ௗ.   

The mathematical models and the results above illustrate the uncertainty related to the variability in cross-
sectional shapes, watercourse seasonality, among other input parameters (Chalhoub, 2016). The river bed 
coefficients that are typically tabulated in literature and used for open channel flow may underestimate the 
roughness of a meandering watercourse and therefore may cause an overly optimistic estimation of the flow 
carried by its stream. Such an overestimation of water flow has many implications on project planning and rural 
development expected outcomes. 
 
5      Implications on Public Management Practices 

Inefficiencies in public management and damage to natural resources have been long discussed in 
literature especially when it comes to developing countries (Hufschmidt and Tejwani, 1993). In several less 
developed countries, the trend of building dams in reservoir management lacked a long term strategic 
management, causing impairment, deterioration in ecosystems, and disequilibrium in the natural habitat 
(Takeushi, 1997). Research on the vertical integration of the water value chain whereby a given drainage basin 
would be folded under a single authority was considered to avoid fragmentation in decision making (UNDP, 
2006). These considerations highlight the importance of closely coordinating runoff data with resource 
management as one single operation (UNESCO, 2008). This suggested approach becomes particularly 
challenging when the rivers go across national boundaries especially in developing countries where there was 
a lack of collaboration (McCaffrey, 1993, Dreischova et al., 2011). Note that the need for clear engineering input 
into public policy decisions is not only critical to developing countries, but also is the standard practice in 
developed countries (Liang et al., 2014; Chalhoub, 2016). 

 

 
Figure 2.  Percent adjustment to the roughness coefficient, n, as a function of flow depth (w = 20m). 
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5.1 Linear Regression - Mathematical Model 
 
5.1.1  Model Definition and Rationale 

A multivariate linear regression mathematical model is developed to address the water policies from the end-
user perspective, based on the analysis of empirical data. Data collection was performed in Byblos County (Casa 
de Byblos), Lebanon, located in Mount Lebanon characterized by steep mountains overlooking the East 
Mediterranean. The paradox that such Counties are facing is that they have high precipitation rates relative to the 
rest of the region but suffer severe water shortage. A framework was developed and used as a basis for data 
collection in preparation for the linear multivariate linear regression analysis (Figure 3). The dependent variable 
was selected to represent the sustainability of using surface water as a primary source of supply. The model has 
three independent variables. The first variable, X1, represents the extent to which projections for the surface flow 
are reliable given their inherent uncertainty. Variable X2 represents the extent to which establishing a multi-decade 
surface water management program would be effective in solving the shortage issue. Variable X3 represents the 
extent to which a transition to groundwater as a source of supply for the end-user would prove to be effective. The 
relationship is expressed in Eq. [8]. 
 

ܻ ൌ ଴ߚ	 ൅	ߚଵ	 ଵܺ ൅ ܺଶ	ଶߚ	 ൅	ߚଷ	ܺଷ ൅  ሾ8ሿ																																							ሺܺሻ݋
 
with ߚ଴ is the intercept of the regression, ߚ௜ (i = 1, …, 3) are the regression coefficients, and o(X) is an error 
term. The regression coefficients will be discussed along with their respective standard errors to determine the 
statistical significance of each independent variable in defining the dependent variable. The sign of the 
coefficient will also indicate whether the correlation is negative or positive. 

The rationale behind the model is to involve the end-user in public decisions regarding the surface water 
resources. This is a subject of rising concern as water becomes a priority in conflict management in the region.  
From an engineering point of view, surface water in the East Mediterranean has untapped potential that requires 
a planned program in between central policy makers and local communities. As such, the choice of the first 
variable is in line with the past research about the negative effects of climate change on surface, and in-turn, 
groundwater. This requires further effort in involving the local communities in decision making in order to remedy 
or cope with this phenomenon. The second variable was selected because it is directly relevant to policy 
choices, where public attitudes towards the strategic planning and implementation of water resource 
management practices, or lack thereof,  is critically relevant at both the planning and implementation levels. The 
third variable represents the ground water value chain as a potential substitute. Data collection was normalized 
on 1 to 5 Likert scale. The technical details of processing groundwater were left outside the scope of this paper 
and are part of future research, which would require more empirical data collection and follow-up. Many 
countries have turned public efforts to the harnessing of ground water more so than managing the surface water 
and runoff due to the economic and environmental reasons. The pollution of surface water, long and unforeseen 
drought periods of surface water flow and the thinning of medium to small river flow due to climatic developments 
are some of the reasons. However, similar concerns apply to groundwater especially in areas where the 
wastewater management is still under development and dwellings rely on untreated buried septic tanks. The use 
of groundwater supply would require further study especially that groundwater has its own range of environmental 
concerns related to ecosystems, water quality and public health threats. 
 
5.1.2  Results and Interpretation 
    The linear regression analysis returned numerical values for the independent variable coefficients and their 
respective error values. The overall regression equation has an r2 of 0.9 showing a good overall fit between the 
data and the model. All three independent variables were found to be statistically significant at α = 10% 
significance level. The relationship with the first independent variable shows a negative correlation with a 
coefficient, ߚଵ of -0.0539 and a standard error, se1 = 0.071 < 0.10. This shows a positive relationship with the 
second variable with a coefficient, ߚଶ= 0.5719 and a standard error, se2 = 0.0474 < 0.10.  The third variable also 
shows a positive correlation with ߚଷ = 0.4763 and a standard error, se3 of 0.0524 < 0.10. The resulting numerical 
relationship between Y and Xi, i = 1, 2, 3, is represented in Eq. [9]. 
 

ܻ ൌ 		െ		0.0539		 ଵܺ ൅ 	0.5719		ܺଶ ൅ 	0.4763		ܺଷ																												ሾ9ሿ 
 

Regression results were reasonably consistent with replies during focus interviews conducted in local 
communities in the exploratory phase. Due to a history of water shortage, local communities have little reliance 
on the surface water estimates. This is also consistent with the secondary data in the region, showing that over 
80% of the surface water flows back to the seas unexploited. The positive correlation with the establishment of 
a multi-decade water resources management plan and the positive correlation with the use of groundwater were 
both expected. However, there were limitations in the data collection that most respondents were not aware of 
the technical challenges present in the use of groundwater as a main source of supply. In the past research, 
several techniques were developed to link the surface with groundwater in simplified models (Jones, 1997, 
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Grayson et al., 1992, Polmann et al., 1991). There are several challenges related to the transition to groundwater 
supply as it is correlated with the surface water and has sources of uncertainty (Querner, 1996, Dettinger and 
Wilson, 1981). Still, the results for X3 do confirm that the willingness of local communities to partake in a program 
on ground water exploration, extraction, treatment, and distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Framework used in empirical data analysis. 
 
6 CONCLUSIONS 

The use of surface water as a main source of supply is discussed along with the uncertainty about its input 
parameters as well as the classical formulas related to the surface watercourses. In several developing countries, 
pollution of the surface water and unforeseen drought periods due to the climatic developments have caused a 
severe drop in the flow of medium to small watercourses. Efforts turned to the harnessing of groundwater rather 
than managing the surface water and runoff due to the economic and environmental reasons. However, similar 
concerns apply to groundwater especially in areas where the wastewater management is still under development. 
An engineering mathematical model was developed and used to illustrate how uncertainty about the input 
parameters affects the surface water flow estimates and outcomes. It was found that the effects related to the 
cross-sectional geometry of the watercourse, location, flow depth, and hence seasonality, have significant effects 
on the accuracy of flow estimates. It was shown that a statistical approach would be more appropriate in computing 
estimates than a deterministic approach, in particular in relation to providing the input for public policy decisions. 
The paper presents a multivariate regression model that provides an insight into end-user input to public decision 
making. The results showed that the sustainability of surface water use as a primary source of supply to local 
communities is statistically significant and negatively correlated to the surface water flow estimates in their current 
form, while it is significantly but positively correlated with the prospects of establishing a multi-decade surface 
water management program, and the effectiveness of transitioning to groundwater exploration, extraction, 
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treatment, distribution and end-use. Regression variables were selected based on their relevance to public 
management and policy choices, and the extent to which they illustrate public attitudes towards the need for 
strategic planning and implementation of water resource management practices at a national level. Details of the 
groundwater value chain were left out of the present scope for future research, empirical data collection and follow-
up. Transitioning from surface to groundwater supply is a potential solution but it requires further study for reasons 
of surface water mismanagement, environmental concerns related to ecosystems, groundwater quality, and public 
health issues.  It is recommended that a national water resource management plan be established with an 
environmentally sustainable multi-decade implementation program. The program needs to be closely linked to the 
environmental protection policies. 
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ABSTRACT 
 
The Yarlung Zangbo River, located in Qinghai-Tibetan Plateau of China, has the characteristics of strong solar 
radiation and low air temperature in meteorology and canyon interlacing with wide valley in topography. These 
characteristics make the ice conditions special in the Yarlung Zangbo River Basin. However, due to the lack of 
existing ice observation data, it is unable to reflect the spatial and temporal ice variation in this region. In this 
paper, we interpreted the single-band satellite images from 2003 to 2016 using decision tree classification 
based on NDWI via ENVI software, and analyzed the temporal and planar spatial variations of ice, the 
influence of air temperature on the ice conditions, and the relationship between topography and ice 
distribution. These results showed that 1) the ice period was Dec. to Feb. In general, ice conditions had small 
inter-annual variation, and the freeze-up intensity, length of border ice and ice period duration decreased as 
the altitude decreases from west to east; 2) the Zangmu reservoir weakened the hydrodynamic conditions, 
resulting in the occurrence of ice in the downstream of the Lhasa River estuary; 3) 9 steady ice jam positions 
existed in the middle Yarlung Zangbo River, which had the planar topographic features of bend and narrowed 
channel; 4) ice cover distributed denser in wide valleys than in Canyons. The study enriched and expanded 
existing studies of ice condition in the Yarlung Zangbo River and is a contribution for water resource 
development and ecological environment protection of the Yalung Zangbo River Basin. 

 
Keywords: Yarlung Zangbo River; remote sensing; ice condition; river net. 

 
 

1 INTRODUCTION  
The famous international river—Yarlung Zangbo River stretches about 2229 km with an average 

elevation of over 4500 m and a drop of 2600 m in China. The solar radiation is strong and the average air 
temperature is low and the change of meteorological elements is significant in the Yarlung Zangbo River 
basin, especially in the middle and upper reaches of it. Due to the unique meteorological and geographical 
elements, the Yarlung Zangbo River presents obvious ice characteristics contrasted with other rivers in the 
same latitude. The Chinese government always pays attention to the water resources and environmental 
protection of the middle and upper Yarlung Zangbo River. Ice has been one of the most important 
environmental factors, while the study of ice in the Yarlung Zangbo River Basin is insufficient now. Existing 
information and data were mainly from the hydrological station, which was set up in the main stream by the 
Tibet Hydrology Bureau. Liu (1993) analyzed the ice data from 11 hydrological stations in the Yarlung Zangbo 
River Basin from 1961 to 1992, and pointed out that the ice conditions in the downstream of the Yarlung 
Zangbo River were rare, while the middle reaches and the tributaries were common, and the ice period 
shortened as altitude decreased. It is difficult to fully reflect the ice variation of the whole basin as the existing 
researches were mainly based on observation data from some fixed-point hydrological station stations.  

Satellite Remote Sensing is a new technology for ice observation with the advantage of large spatial 
scale, being timely and effective. It is now widely used for it is free from the human, financial or traffic factors, 
and it can be complementary with the traditional field observation. Since the 1980s, scholars used a variety of 
satellites data (e.g. Landsat, Terra satellites multi-spectral data, SMMR and other satellite passive microwave 
data, Radarsat satellite radar data) for the study of sea ice distribution and intensity (Steffen, 1991; Liu et al., 
1999; Gloersen and Cavalieri, 1986). Nonaka et al. (2007) used the remote sensing method to reveal the 
average break-up of 18 lakes in Eurasian continents. In recent years, with the improvement of remote sensing 
image, the application of remote sensing technology in river ice research is increasing. Yang (2006) used 
multi-source remote sensing technology to carry out the flood monitoring from MODIS, landsat7, CBERS-02 
and RADARSAT data to track the occurrence, development and ice-jam process in the Yellow River, China. 
Kääb et al. (2013) used the satellite images with the resolution of 15 m to track the ice conditions in the lower 
Lena River, Siberia, and studied the ice flux and water velocities. Li et al. (2016) classified the river ice in the 
Yellow River Sanhu estuary through the interpretation of landsat-8 images.  

In this study, we used remote sensing classification technology to interpret the Landsat images from 
2003-2016, figured out the temporal and spatial variation of ice in the middle Yarlung Zangbo River, and 
analyzed the influence factors and the relationship between ice condition and meteorology and topography. 
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2 STUDY AREA 
The reach from Duobaixiang (110 km upstream from Lhaze town, 29°11′17.04″N, 86°50′53.95″E) to 

Zangmu dam (29°11′4.58″N, 92°31′0.48″E) has a total length of about 700 km. It is the main part of the middle 
Yarlung Zangbo River and it belongs to temperate semi humid semi-arid plateau monsoon climate zone. 
Along the study reach, it distributes the Lhaze, Shigatse, Gongga, and Giacha weather stations. The average 
air temperature of the basin is around 0 ºC during Nov. to Feb. (Wang et al., 2015). In this region, canyon and 
wide valley interlace each other and the riverbed elevation reduces from 4133 m to 3266 m. 

Due to the change of air temperature and altitude, ice condition changes obviously from upstream to 
downstream. In this study, the middle Yarlung Zangbo River was divided into 9 small parts (Figure 1) 
according to the terrain characteristics and ice conditions. 1# (river reach 1# is abbreviated to 1#), 2#, 6#, 8# 
and 9# reaches lie in canyons, 3#, 4#, 5# and 7# reaches lie in wide valleys, and 3#, 5# and 7# reaches have 
the characteristic of river net. 
 

 
Figure 1. Location of the study area in the Yarlung Zangbo River Basin. 

 
3 MATERIALS AND METHODS  

 
3.1 Materials 

The series of Landsat satellites (NASA, America) is widely used for earth observation. TM sensor and 
above version sensors have the spatial resolution of 30 m. Two satellites being in service at the same time 
makes the time resolution of data up to 8 days. Data during the winters of 2003-2015 from Landsat-5, 
Landsat-7 and Landsat-8 were obtained to analyze ice condition. Due to the large longitude span, 4 satellite 
images were needed to cover the whole study area at the same time. From west to east, the date acquired is 
1 day later, but there is no effect on the observation especially for the stable ice period. Data collection is 
shown in Table 1. 

 
Table 1. Remote sensing data used in this research. 

Year Satellite Quantity WRS Path/Row 
2003-2008 

(2005&2007 unavailable) 
Landsat-5&Landsat-7 192 140/40,139/40, 

138/40&137/40 
2013-2015 Landsat-7&Landsat-8 144 

 
3.2 Methods  

Generally, the basic method of recognizing ice and water in a piece of satellite image is to use the multi-
spectral images. This study adopted the decision tree classification to divide ice from water and land bank 
(river beach). 

Firstly, FLAASH atmospheric correction was performed to the multi-spectral image to weaken the 
negative impact from atmosphere and light to get the surface reflectance that is close to the real one. 
Secondly, the NDWI (Normalized Differences Water Index) was computed with the reflectance data. 
According to the false color composite and spectral reflectance curve, a certain amount of ice, water, and river 
beach samples were selected visually, then their NDWI range was compiled in statistics to form the 
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classification rules. Then, the decision tree for classification was created and executed. At last, classification 
accuracy test was also executed via manual visual interpretation. 

 
4 RESULTS AND ANALYSIS 

Through the interpretation of the satellite images, the temporal and planar spatial information of ice in the 
middle Yarlung Zangbo River was obtained. Ice phenomena involve complex interactions between 
hydrodynamic, mechanical, and thermal processes (Shen, 2010). The influencing factors include meteorology, 
river topography and hydrodynamic characteristics. Considering the data collection of the above influencing 
factors, in this paper, ice conditions in the middle Yarlung Zangbo River were analyzed mainly from the 
following 3 aspects: the temporal and planar spatial variations of ice, the influence of air temperature on the 
ice conditions, and the relationship between topography and ice distribution. 

 
4.1 The features of ice condition 

(1) Temporal variations 
The initial ice period in satellite image was in mid Nov. to mid Dec. The coverage of ice gradually 

increased since then and reached to the top in Jan., and gradually reduced till the ending date of the ice 
period which was generally in Feb. The ice period duration of the whole study area was 56 to 88 days. 

It had a delaying trend for the initial ice period in the winters of 2003-2008, while the ending date of 
ice period was relatively stable, resulting in the shortening of ice period and decreasing of ice 
development degree. However, for the winters of 2013-2015, the ice development degree was enhanced, 
which was caused by the local climate change and hydrological characteristics. 

Contrasting with these 9 reaches, the initial ice period of 3# to 6# was later than that of 1# to 2#, and 
the ending date of ice period was earlier than that of 1# to 2#, making the ice period of 3# to 6# shorter 
than that of 1# to 2#. The average ice period of 6# was about 24 days shorter than that of 1# (Figure 2). It 
can be observed that from upstream to downstream, the ice period was gradually shortened. No ice was 
observed downstream of 7# (except for the Zangmu reservoir). It is worth noting that the ice period of 4# 
was the shortest which was even shorter than that of 5# downstream of 4#. This phenomenon was 
related to the change of hydraulic condition caused by topographic features. 

Overall, the ice period of the middle Yarlung Zangbo River gradually decreased with the decreasing 
of altitude. This is consistent with the research conclusion from Liu (1993) based on the observation data 
from hydrological stations. 

 

 
Figure 2. Ice period duration of each river reach. 

 
(2) Spatial variations 

Figure 3 shows the ice interpretation images of stable ice period during the winter of 2015-2016 
when it reached to the maximum ice coverage (28/1/2016-31/1/2016) of the middle Yarlung Zangbo 
River. The main forms of ice in each reach are shown in Table 2. 

1# (Duobaixiang to Zhuoricun), stretching for 40 km, was observed with the biggest ice area. With 
the average air temperature lower than 0 ºC, the reach upstream of 1# played its role of producing ice for 
1#. Under suitable terrain conditions, ice accumulated and the ice edge kept going upstream, so 1# had a 
large amount of ice every winter. Affected by terrain conditions, ice jam occurred at many sections in 1#. 
The channel of 2# (Zhuoricun to Daju) was relatively straight and the hydraulic condition was simple. 
Border ice was the main ice form in this reach. Ice forms in 3# were mainly border ice and river net ice 
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cover. Particularly, the river net 10 km downstream Lhaze town had the densest distribution of river net 
ice cover. It was mainly due to the reducing of water power caused by the dispersion of water. 4# was the 
lower reach with single channel of Dogxung Zangbo River estuary. Its main ice form was border ice, but 
in some years two steady ice jam positions occurred (Table 3). Almost the whole reach of 5# is river net 
and its length doubles that of 3#. Inflows from the tributaries made the hydrodynamic condition more 
powerful. Added with higher average air  

 

 
 

 
 

 
 

 
 

Figure 3. Ice images of each river reach in stable ice period of the winter of 2015-2016. 
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Temperature, the open water area was much larger than that in 3#. According to the data from 

Yangcun Hydrological Station (located within 6# to 8#), water temperature was above 0.8 ºC in winter, 
causing that in 6# to 8#, no ice was observed from satellite images. In 8#, ice was suspected to occur. 
However, after identification, the suspected ice was confirmed to be the splash of jet stream caused by 
the riverbed rocks or man-made structures. This phenomenon also existed in other seasons and these 
positions had never changed. 

9# was the Zangmu reservoir. In Nov. 23, 2014, Zangmu hydropower station started working, and 
the maximum water depth in front of the dam was 60 m. In Jan. 28, 2015, a small piece of ice cover in 
front of the dam was observed from the Landsat image. Before the construction of the Zangmu Reservoir, 
ice never occurred in 9#. After the construction of the dam, the flow condition was weakened and a large 
piece of ice cover was observed in the winter of 2015-2016. The ice cover appeared between Dec. 12, 
2015 and Dec. 20, 2015 and disappeared between Feb. 8, 2016 and Feb. 16, 2016 (about 58 days). The 
longest ice cover (7.5 km) was observed in Dec. 30, 2015. 

In general, with the elevation’s decrease from upstream to downstream in the middle Yarlung 
Zangbo River, freezing strength and border ice were gradually weakened. Except for 4#, ice positions 
and ice forms were inter-annually stable. Hydrodynamic conditions were weakened due to the 
construction of Zangmu reservoir, making it possible to form ice cover in winter. 

 
Table 2. Main ice form of each river reach. 

Ice Period 
Reach 

Mark 
1# 2# 3# 4# 5# 6# 7# 8# 9# 

12/2003-2/2004 ● ○ ● ○ ● - - - - 

●ice cover; 
○border ice; 
-open channel. 

12/2004-2/2005 ○ ○ ● ○ ● - - - - 

12/2006-2/2007 ○ ○ ● ○ ● - - - - 

12/2008-2/2009 ○ ○ ● ○ ● - - - - 

12/2013-2/2014 ○ ○ ● ○ ● - - - - 

12/2014-2/2015 ● ○ ● ○ ● - - - ● 

12/2015-2/2016 ● ○ ● ○ ● - - - ● 

 
4.2 Air temperature and ice conditions 

Air temperature is the main factor affecting the process of ice development. The feature of multi-year 
average air temperature variation in the Yarlung Zangbo River Basin is consistent with altitude variation, that 
is, multi-year average air temperature gradually decreases from upstream to downstream (Zhang et al., 2011). 
Figure 4 shows the average air temperature during Dec. to Feb. of 2003-2016 from Lhaze, Shigatse, Gongga 
and Giacha weather stations. It shows that the average air temperature in winter was the lowest in Shigatse 
and highest in Giacha. On the whole, the cumulative negative air temperature and its cumulative days 
decreased from upstream to downstream. Air temperature in Qinghai-Tibetan Plateau fluctuates widely in a 
day and the difference can reach up to 20 ºC, and the ice formed in the night can easily decay in the daytime 
by solar radiation and higher air temperature (Liu, 1993). As a result, the cumulative amount of ice was 
relatively small. This is in accordance with the result of the main ice form of each reach in Table 2. Figure 5 
shows the close relationship between ice period and negative air temperature and the correlation coefficient 
reaches 0.69 between ice period of river net in 3# and cumulative days of negative air temperature.  

Due to the strong fluctuation of air temperature in ice period, the average daily air temperature can be 
above zero. Figure 6 compares the ice area of the 4 km-long river net near Jiandacun (located in 3#) and the 
daily air temperature of Lhaze weather station in the winter of 2015-2016. It showed a significant correlation 
between the process of ice development and air temperature. After Dec. 18, the average daily air temperature 
was negative and the river net ice cover was observed with an area of 250,000 m2 in Dec. 19. After 5 days’ 
accumulation of negative air temperature, ice area increased to 575,000 m2. The rise of air temperature made 
the river ice to reduce from Jan. 4th. Ice area increased again after 8days of negative air temperature. Then, 
the air temperature gradually increased. Meanwhile, the ice area gradually decreased due to the other 
conditions (e.g. solar radiation and runoff) combined with air temperature. 
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Figure 4. Mean air temperature of Dec. to Feb. along the middle Yarlung Zangbo River. 

 

 
Figure 5. The Correlation analysis between ice period and cumulative days of negative air temperature. 
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Figure 6. The variation of daily air temperature and ice area. 

 
4.3 Topography and ice conditions 

(1) Planar topographic features and steady ice jam positions 
There were 9 steady ice jam positions in the middle Yarlung Zangbo River (Table 3). In 1# and 2#, 

there were 7 ice jam positions which first appeared and last disappeared in winters. In 4#, there were 2 
ice jam positions which appeared in the winter of 2004, 2006 and 2008 and were stable during the ice 
period. The terrain features of ice jam positions contained at least one of the following two features: 
narrowed channel and bend channel. These channels blocked the slush ice and then were jammed. 

 
Table 3. Information of steady ice jam positions. 

River Reach Latitude and Longitude 
The Maximum Length  

of Ice Cover (km) 
Planar Topographic 

 Feature 

1# 

29°9′58.19″N,86°59′7.60″E 1.8~15.3  bend 

29°8′8.86″N,87°3′57.81″E 1.6  bend & narrow 

29°9′15.76″N,87°5′34.46″E 0.6 narrow 

29°9′44.54″N,87°8′14.21″E 0.3 narrow 

29°9′23.43″N,87°8′31.32″E 0.4 narrow 

29°8′58.81″N,87°9′25.27″E 1.0 narrow 

2# 29°6′40.45″N,87°32′46.24″E 0.4  bend 

4# 
29°22′13.64″N,88°3′11.27″E 0.4 bend & narrow 

29°22′3.34″N,88°6′2.34″E 0.4  bend & narrow 

 
Most of the ice jams occurred at bend channel. This was mainly due to the reduction of 

hydrodynamic and ice dynamic conditions. Slush ice easily accumulated there and then jammed when 
the ice accumulated was dense enough. Ice edge went upstream due to the bank resistance. Most of the 
ice jams occurred downstream of the bend (Figure 7). 

 

 
Figure 7. Steady ice jam positions at bends. 
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When the channel was getting narrower, the cross-section area was reduced, and it was easier to 
get jamming. Steep mountains formed the canyons, and alluvial fans were formed by the broken rock 
mass taken down by stream. The alluvial fans occupied a part of the riverbed, making the channel 
narrower and shallower. In these positions, ice was easily jammed, making them to be steady ice jam 
positions (Figure 8). 

In addition, many unstable ice jam positions were observed in the middle Yarlung Zangbo River. The 
ice jams recurred during ice period at these positions affected by many influence factors such as 
topography and air temperature. 

 

 
Figure 8. Steady ice jam positions resulted of alluvial fans. 

 
(2) Topographic features and ice distribution 

Canyons and wide valleys interlace in the study area. Reaches in canyons are single channels while 
in wide valleys mostly river nets (Shan, 2007). 

Flow concentrated and made a strong hydrodynamic condition in single channel, while the flow was 
dispersed in river net and had weakened hydrodynamic condition. Small flow is more sensitive to low air 
temperature so it is easier for small flow to form ice cover. The channel of river net branches was narrow 
so that the slush ice was stuck easily. As water level dropped, many dead water zones were formed and 
they froze. 5# and 7# were in wide valleys with the channel form of river net and ice occurred (the ice 
condition in 7# was extremely weak and only existed upstream of it). 6# was in canyon with rapid flow in 
narrow single channel, so none of the ice was observed. The reach upstream Lhaze town (1# & 2#) was 
observed to be the most significant ice condition and downstream of it the ice form was mainly river net 
ice cover. 

  
5 CONCLUSIONS 

As altitude decreases, the Yarlung Zangbo River flows from west to east, forming straight stream channel, 
bend channel, river net, alluvial fan and other flat terrain features. The various flat terrain features together 
with unique meteorological features lead to special ice conditions in Yarlung Zangbo River. Based on the 
ENVI software and the single-band satellite images of the winters of 2003 to 2016, this paper interpreted and 
analyzed ice conditions in the 700 km-long middle Yarlung Zangbo River. The results indicate that: 1) the ice 
period was from Dec. to Feb. and the ice condition developed to its top-stage in Jan. Since the inter-annual 
variation of air temperature was relatively stable, the inter-annual variation of the ice conditions in the middle 
Yarlung Zangbo River was also stable. The newly built Zangmu reservoir weakened the hydrodynamic 
conditions, resulting in the occurrence of ice cover downstream of the Lhasa River estuary; 2) Ice occurred 
mainly in the 325 km-long upper reach of the study basin. Air temperature of the middle basin increased as 
the altitude decreased from upstream to downstream, leading to the weakening of ice development, total 
length of border ice, and ice period duration along stream; 3) There were 9 steady ice jam positions due to 
narrowed and bend channels in the study area. Due to the change of hydraulic characteristics and the 
reduction of ice dynamics, slush ice easily got jammed there. The ice edge developed upstream due to the 
riparian resistance; 4) Due to the difference in hydraulic conditions between river net and single channel, ice 
cover distributed denser in wide valleys than in Canyons. 
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ABSTRACT 
 
Planning and management of groundwater systems require appropriate monitoring data for groundwater 
quality and aquifer hydraulic head measurements. These data are usually collected from monitoring wells 
which are spatially distributed in the basin. Since monitoring of groundwater systems can be a time consuming 
and costly task, a minimum number of monitoring wells with an optimum spatial distribution is desired. 
Therefore, the conception of monitoring networks becomes an important engineering optimization problem. 
For this purpose, a genetic algorithm (GA) based optimization approach is proposed in this study for seeking 
the optimum groundwater quality monitoring network, starting with an already available set of monitoring wells. 
The goal of the proposed approach is to determine the optimum numbers and locations of the monitoring wells 
which provides equivalent amount of groundwater quality information with those obtained by using all 
available monitoring wells. This task was accomplished by representing each monitoring location with a binary 
bit in a GA chromosome to determine whether the associated location will be selected for the network. Then, 
the corresponding configuration fitness value was calculated by interpolating the associated water quality data 
over the field. The configuration fitness consists of the two objectives which are the maximization of the Nash-
Sutcliffe model efficiency and the minimization of the number of monitoring wells in the newly generated 
configuration. Integration of these two objectives in an optimization framework results in best solutions with a 
minimum number of monitoring wells over the entire basin. Applicability of the proposed solution approach 
was evaluated by using groundwater quality data for the Gediz River Basin, a major basin located in western 
Turkey. The model results indicate that the proposed approach significantly reduced the number of monitoring 
wells with a relatively small deviation of the spatial distribution of the studied water quality parameter.  
 
Keywords: Water resources; groundwater quality; monitoring network design; genetic algorithm; interpolation. 

 
 

1 INTRODUCTION 
 The planning and management of groundwater require appropriate monitoring of groundwater quantity 

and quality. Data obtained from this kind of monitoring is typically collected by monitoring well networks, which 
may consist of more or less randomly distributed wells drilled in the studied aquifer system. The number and 
spatial distribution of wells in a monitoring network are important considerations that can affect the outcome in 
groundwater quality characterization studies. The configuration of a groundwater monitoring network that is 
used for groundwater sampling depends on several site-specific factors such as locations of already existing 
wells, suitability of a well for groundwater sampling, well configuration (number and depth of screens), 
accessibility, distance between wells, number of required groundwater samples, project budget and time, etc. 
Since groundwater sampling can become a time consuming and costly task, optimum design and assessment 
of the monitoring well network must be viewed as an important engineering optimization problem. Therefore, 
the main objective of this study is to propose a genetic algorithm (GA) based optimization approach 
(Goldberg, 1989) to solve this problem. The goal is to determine the optimum number and locations of the 
monitoring wells that provides an equivalent amount of groundwater quality information compared to the 
outcome of a network with the most available number of monitoring wells. 
 Previous studies dealt with the optimization of groundwater monitoring well networks to identify the 
distribution of contaminant plumes (Chadalavada and Datta, 2008; Kim and Lee, 2006), to identify unknown 
pollution sources (Jin et al., 2014; Bashi-Azghadi and Kerachian, 2010; Datta et al., 2009), and to reduce 
redundancy and minimize cost (Guo et al., 2011; Dhar and Datta, 2010; Baalousha, 2010; Wu et al., 2005). 
Methods used in these studies vary, however, most of them are based on nonlinear search and optimization 
methods used in combination with geostatistics (Chadalavada and Datta, 2008), flow and transport modeling 
(Wu et al., 2005; Reed et al., 2000) or groundwater vulnerability mapping (Baalousha, 2010).  
 The study presented in this paper focuses on finding a network with the fewest wells aiming to obtain 
sufficient information on groundwater quality. In the currently proposed approach, each monitoring well in the 
watershed is represented with a binary GA bit to evaluate if the corresponding monitoring well will be selected 
for the network. After determining the monitoring well distribution for each GA solution, their configuration 
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fitness is calculated by interpolating the associated water quality data over the basin by using the minimum 
curvature interpolation approach. The proposed approach can solve the problem by simultaneously optimizing 
two conflicting objectives. The first objective is the maximization of the Nash-Sutcliffe model efficiency which is 
calculated by using the interpolated water quality data for the solutions with all available monitoring wells and 
the newly generated well configuration. The second objective deals with the minimization of the number of 
monitoring wells in the newly generated configuration by considering economic constraints. 
 
2 STUDY AREA 

The applicability of the proposed approach was evaluated on the groundwater monitoring wells of the 
Gediz River Basin (GRB) which is one of the most important river basins in Turkey (Figure 1). GRB has a 
drainage area of 17,146 km2 and receives a total of 617 mm precipitation annually, based on long-term 
meteorological records. Main socio-economical activities in the basin are agriculture, animal husbandry, food 
industry, textile industry and mining. The agriculture sector is the most important water consumer in the GRB. 
Approximately 351,000 hectares of the basin area is subjected to extensive agricultural practices. 
Hydrogeology of the GRB consists of the 8 units which are sedimentary units (clay, sand, and gravel), 
limestone, clayey limestone (karst), detritic rocks, fractured rocks (volcanic), fractured limestone (karst), 
sandstone, shale, marble (karst), schist, and gneiss (DSI, 2014). A general location map of the GRB is 
provided in Figure 1. 

Groundwater quality data set for the GRB was obtained from DSI (2014), which is a report for a 
comprehensive hydrogeological study conducted in the GRB. During the mentioned study, groundwater 
samples from 618 wells were collected for three monitoring periods which represented different seasons of the 
year (Mar – May 2013, Sep – Nov 2014, Mar – May 2014). All samples were analyzed for over 20 
groundwater quality parameters. For this study, electrical conductivity (EC) is considered as the main 
groundwater quality parameter that is to be used in the optimization of the monitoring network. EC is a widely 
used indicator parameter to assess the general quality status of groundwater. For each monitoring period, 
spatial distributions of measured EC values are given in Figure 2. 
 

 
Figure 1. General location map of the Gediz River Basin (GRB). 
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(a) 

 
(b) 

 
(c) 

Figure 2. EC values in (a): Mar – May 2013; (b): Mar – May 2014; (c): Sep – Nov 2014. 
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Figure 3. Random bits and their corresponding monitoring network configurations for ݊௣ ൌ 2 and ݊௕ ൌ 10. 

 
3 OPTIMIZATION MODEL 

As indicated previously, a GA-based optimization approach was proposed for seeking the optimum 
groundwater quality monitoring network. The objective of the proposed approach is to optimally determine the 
numbers and locations of the monitoring wells which provides an equivalent amount of groundwater quality 
information with those obtained by using all available monitoring wells in the field. The computational steps of 
the proposed GA-based optimization approach can be defined as follows: 

Let ݊௣ be the number of chromosomes in the GA population, ݊௕ be the number of all available monitoring 
wells in the field, and ܫ௖ ൫ܿ ൌ 1,2,3,⋯ , ݊௣൯ be the ܿth GA chromosome in the population. ܫ௖ has a total of ݊௕ bits 
and each of them corresponds to a monitoring well location such that a value of 1 means the corresponding 
monitoring well is active whereas a value of 0 means the well is not active in the generated network 
configuration. The first task is to generate the initial population which includes randomly generated ݊௣ ൈ ݊௕ 
bits. As an example case, Figure 3 shows randomly generated GA chromosomes and their corresponding 
network configurations for an example basin model by considering ݊௣ ൌ 2 and ݊௕ ൌ 10.  

As can be seen from Figure 3, for ܫଵ and ܫଶ, 6 and 4 out of 10 monitoring wells are selected as the active 
wells to build up the network configurations. After this process, the groundwater quality information of ݍ௞ 
ሺ݇ ൌ 1,2,3,⋯ , ݊௕ሻ in the active well locations are interpolated over the field. The rationale for this operation is 
the conversion of point observations to a two dimensional parameter field. Then, interpolated parameter 
values within the watershed are separated from the all values to calculate the configuration fitness values. 
This optimization problem can be mathematically defined as follows: 

ݖ ൌ maxሺ ଵ݂ െ ߱ ଶ݂ሻ [1] 

ଵ݂ ൌ 1 െ
∑ ሺ ෤ँ௜ െ ෤ँ௜

∗ሻଶ
௠ೣ∙௠೤
௜ୀଵ

∑ ሺ ෤ँ௜
∗ െ ँ̅∗ሻଶ

௠ೣ∙௠೤
௜ୀଵ

 [2] 

ଶ݂ ൌ
෤ߟ
݊௕

 [3] 

subjected to  

෤ँ௜ ൌ ൜ݍ෤௜					if		݅
୲୦	grid	point	is	located	in	the	basin	boundary

0						otherwise																																																																									
			; 		݅ ൌ 1,2,3,∙∙∙, ݉௫ ∙ ݉௬ [4] 
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෤௜ݍ ൌ ,௞ݍ〉 ;		෤〉௠ೣ∙௠೤ߟ 		݅ ൌ 1,2,3,∙∙∙, ݉௫ ∙ ݉௬		; 		݇ ൌ 1,2,3,∙∙∙, ݊௕ [5] 

෤ߟ ൌ෍ ௞ߟ
௡್

௞ୀଵ
 [6] 

௞ߟ ൌ ൜1		if		݇
୲୦	monitoring	well	is	active

0		otherwise																																								
			; 		݇ ൌ 1,2,3,∙∙∙, ݊௕ [7] 

 
where ݍ௞ is the groundwater quality information in the ݇th monitoring well ሺ݇ ൌ 1,2,3,∙∙∙, ݊௕ሻ; ߟ௞ is an integer 
variable which takes a value of 1 if ݇th monitoring well is active, otherwise it takes a value of 0; ߟ෤ is the number 
of active wells which is calculated by taking the sum of all ߟ௞ values ሺ݇ ൌ 1,2,3,∙∙∙, ݊௕ሻ; 〈ݍ௞,  ෤〉௠ೣ∙௠೤ is theߟ

minimum curvature based interpolation model which converts the point measurements in the ߟ෤ wells into two 
dimensional continuous surface with a dimensions of ݉௫ ൈ݉௬ where ݉௫ and ݉௬ are the number of grids in ݔ 
and ݕ directions, respectively; ݍ෤௜ is the interpolated groundwater quality information in the ݅th grid point 
൫݅ ൌ 1,2,3,∙∙∙, ݉௫ ∙ ݉௬൯; ෤ँ௜ is the groundwater quality information value which takes a value of ݍ෤௜ if ݅th grid point 
is located within the watershed boundary ൫݅ ൌ 1,2,3,∙∙∙, ݉௫ ∙ ݉௬൯, otherwise it takes a value of 0; ෤ँ௜

∗ is the 
groundwater quality information value in the ݅th grid point ൫݅ ൌ 1,2,3,∙∙∙, ݉௫ ∙ ݉௬൯ which is calculated by 
considering all available monitoring wells within the basin ሺ݊௕ሻ; and ँ̅∗ is the mean of the all ෤ँ௜

∗ values in the 
field. 

As can be seen from Eq. [1], the objective function ሺݖሻ of the optimization model is composed of two 
different objectives. The first objective ሺ ଵ݂ሻ deals with the maximization of the Nash-Sutcliffe model efficiency 
whose value changes from െ∞ to 1 such that a value of 1 corresponds to a perfect match between ෤ँ௜ and ෤ँ௜

∗ 
for all the grid points in the watershed. The second objective ሺ ଶ݂ሻ is related with the minimization of the ratio 
between the number of active and all available monitoring wells which is used due to the economic reasons. 
Note that these two objectives are integrated in a single objective function by using a weighting coefficient of 
߱ which is used to adjust the importance of ଶ݂ with respect to ଵ݂. Note that different values of ߱ result with 
different optimum solutions. Therefore, a detailed sensitivity analysis should be conducted to determine the 
influence of ߱ to the model results.  

After calculation of the configuration fitness (i.e. Eq. [1]) for each chromosome in the GA population, a 
new population is generated by means of the roulette wheel approach (Goldberg, 1989). Furthermore, the 
best solution in the population in terms of the calculated configuration fitness values is directly transferred to 
the next generation by means of the Elitism rule. Then, randomly selected chromosomes are subjected to 
crossover and mutation processes based on the probabilities of ݌௖ and ݌௠. After completion of these 
computational steps, a new GA population is formed. By repeating these steps until satisfying the defined 
termination criterion (i.e. maximum number of generations), the problem of optimum groundwater monitoring 
network design can be solved by means of the proposed GA based optimization approach. The flowchart of 
the proposed GA based optimization approach is given in Figure 4.  
 
4 IDENTIFICATION RESULTS 

The proposed GA based optimization approach was executed to seek the optimum monitoring network in 
GRB by considering the EC values in the first monitoring period (i.e. Mar – May 2013). As indicated 
previously, the first objective is to maximize the Nash-Sutcliffe model efficiency which is determined by 
interpolating the EC values in the generated network configuration for each GA chromosome and all the 
available wells in the basin, respectively. The second objective is to obtain the best configuration by 
considering the minimum number of monitoring wells since each well needs to be visited to collect the 
samples. Since these two objectives are integrated into a single objective function by means of a weighting 
coefficient, ߱, the identified results were evaluated for different ߱ values. Note that the total number of bits for 
each GA chromosome was assumed to be ݊௕ ൌ 618 since each well in GRB corresponds to a GA bit. As 
indicated previously, once the value of a bit is 1, the corresponding monitoring well was assumed to be active 
which means the EC value in the well was used during interpolation. On the other hand, the value of 0 for a bit 
means that the corresponding well is not active and its EC value was not used in the interpolation. Since the 
bit numbers for each GA chromosome was relatively high, the number of populations was taken as ݊௣ ൌ 200 
to maintain the diversity in the population. The probabilities of crossover and mutation were taken as ݌௖ ൌ 0.95 
and ݌௠ ൌ 0.025 and search process was terminated after 500 GA generations. For different ߱ values, the 
convergence plots of the proposed GA based optimization approach can be seen in Figure 5. As can be seen, 
for all the solutions, search processes were started from different initial solutions and objective function values 
were continuously improved through GA generations. It is clearly seen that when the values of ߱ increased 
from 0.20 to 1.00, the corresponding objective function values decreased as an expected behavior since the 
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second objective of ଶ݂ becomes more dominant for the higher ߱ values. Regarding this outcome, the 
identification results for different ߱ values are compared in Table 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Flowchart of the proposed GA-based optimization approach. 
 

 
Figure 5. Convergence plots for different ߱ values. 

 
Table 1. Identified results for different ߱ values. 

Weighting 
Coefficient 

Objective 
Function 

Value 

Nash-Sutcliffe 
Model 

Efficiency 

Ratio between the number 
of active and all available 

monitoring wells 

Number of 
Active 
Wells 

ሺ߱ሻ ሺݖሻ ሺ ଵ݂ሻ ሺ ଶ݂ሻ ሺߟ෤ሻ 
     

0.20 0.839 0.951 0.563 348 

0.40 0.749 0.937 0.471 291 

0.60 0.667 0.920 0.422 261 

0.80 0.609 0.891 0.353 218 

1.00 0.569 0.877 0.307 190 
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(c) (d) 

  
(e) (f) 

Figure 6. Identified monitoring well locations for different ߱ values (a): 618 monitoring wells; (b): ߱ ൌ 0.2; (c): 
߱ ൌ 0.4; (d): ߱ ൌ 0.6; (e): ߱ ൌ 0.8; (f): ߱ ൌ 1.0. 

 
As can be seen from Table 1, for ߱ ൌ 0.2, the final objective function value was obtained as 0.839 which 

corresponds to a Nash-Sutcliffe model efficiency of 0.951. This result was obtained by using 348 wells and 
this corresponds to 56.3% of all the monitoring wells in GRB. For ߱ ൌ 1.00, the objective function value was 
reduced from 0.839 to 0.569 and the same trend was also observed in the Nash-Sutcliffe model efficiency 
which was reduced from 0.951 to 0.877. However, this result was obtained by using the EC values in 190 
wells which corresponds to 30.7% of all the monitoring wells. Generally speaking, the number of active wells 
monotonically decreased as the value of ߱ increased. As indicated previously, this result is associated with 
the dominant nature of the ଶ݂ for the high ߱ values. For each solution in Table 1, the identified monitoring well 
locations are compared in Figure 6. It is clearly seen that all the identified well locations covers the entire area 
of the GRB.  

It should be noted that the monitoring networks in Figure 6 were identified by considering the EC values 
in the first monitoring period (i.e. Mar – May 2013). After obtaining the model results, the next task was to 
validate the identified well configurations by considering the EC values in the second (i.e. Sep – Nov 2014) 
and the third (i.e. Mar – May 2014) monitoring periods. Note that the GA-based optimization model was not 
executed for the validation process. Instead, EC values in the corresponding well locations (Figure 6) for the 
second and the third monitoring periods were interpolated and the results were compared with those obtained 
by interpolating the EC values for the all available monitoring wells in the field. The validation results are given 
in Figure 7 in terms of the Nash-Sutcliffe model efficiency coefficient. As can be seen, for ߱ ൌ 1.0, the 
validation process resulted in the efficiency values over 0.90 and 0.88 for the second and the third monitoring 
periods, respectively. The trend of decrease in the model performance with increase of ߱ was also observed 
in the validation process. 
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Figure 7. Validation results for different ߱ values. 

 
5 CONCLUSIONS 

In this study, a GA-based optimization approach is proposed for assessing and designing the 
groundwater quality monitoring networks. In the proposed approach, each monitoring well in the basin was 
represented with a binary GA bit to evaluate if the corresponding monitoring well location would be selected 
for the new network configuration. After determining the network configuration by means of the GA 
chromosomes, the corresponding parameter field was generated by using the Minimum Curvature 
interpolation approach. The proposed approach has two objectives: Maximization of the Nash-Sutcliffe model 
efficiency and minimization of the well numbers in the alternative network design and these two objectives are 
combined in a single objective function by means of a weighting coefficient. Integration of these two conflicting 
objectives in an optimization framework resulted with the best solutions that suggest a minimum number of 
monitoring wells over the entire watershed. Applicability of the proposed GA-based optimization approach was 
evaluated by using groundwater quality data from 618 groundwater monitoring wells in the Gediz River Basin, 
Turkey. Identified results indicated that the proposed optimization approach significantly reduced the number 
of monitoring wells with a relatively small change in the spatial concentration distribution of the selected 
groundwater quality parameter. Furthermore, since different values of this weighting coefficient provide 
different solutions, a detailed decision making analysis should be performed to determine which network 
configuration is the best alternative. All the analyses were performed by taking the electrical conductivity as 
the water quality parameter. Same model runs should also be performed for other parameters and the results 
of them should also be included in the decision making analysis which is considered as a future study. 
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ABSTRACT 
 
The Selangor River lies on the west coast of Peninsular Malaysia, 70 km north of Kuala Lumpur. The 
Selangor catchment area is approximately 2000 km2 and has two major dams located in the upstream part of 
the catchment: Sungai Selangor Dam and Sungai Tinggi Dam. Lembaga Urus Air Selangor (LUAS) is the 
Malaysian government agency responsible for water resources management of the Selangor catchment, with 
their main challenge being to balance an increase in water demand, whilst trying to manage the catchment’s 
environmental state. The key to this is the amount of water that is released from the two reservoirs. The 
current manual decision-making process (based on staff experience) does not provide LUAS with the 
efficiency and accuracy that is required in a catchment where sustainability is key and water resources are not 
always abundant. A solution was required to improve the management of the current resources, thus reducing 
the need for the costly and environmentally contentious development of new infrastructure. The operational 
Decision Support System (DSS) for sustainable water resources management of the Sungai Selangor 
catchment is a non-structural tool developed to support LUAS in optimising the reservoir releases and water 
abstractions in the catchment. The DSS is a fully automated system that is driven by a combination of live, 
telemetered gauged data from various sources including the InfoBanjir telemetry database and Numerical 
Weather Prediction (NWP) rainfall forecasts from the Malaysian Meteorological Department (MMD). 
Simulations are carried out automatically on an hourly basis, to calculate and forecast whether water levels at 
the main abstraction location (SSP1) are being maintained at the required levels. If the required water levels 
at SSP1 are not met, being either too high or too low, the model is re-run using an adjusted reservoir release 
time series. The DSS should also be able to help LUAS in the future to increase the sustainability of 
management of water resources in the Selangor catchment. This paper describes the approach developed to 
support LUAS to meet this objective, in a manner that can be used in real-time, and can be transferred to 
other catchments in the future. The advantages and disadvantages of potentially expanding this system to use 
ensemble forecasts, data assimilation and optimization algorithms are discussed, along with suggestions for 
further research. 
 
Keywords: Water resource management; operational systems; NWP; forecasting. 
 
 
1 INTRODUCTION   
 In Malaysia, drought frequency is increasing and in recent years, a series of drought conditions has hit 
the country (Sanusi et al., 2015). Changes in global precipitation patterns may be causing increasing drought 
frequency in Malaysia (Ahmad and Low, 2003), in (Sanusi et al., 2015), (Ahmad and Hashim, 2010), in 
(Sanusi et al., 2015). In the region of Selangor, the most recent drought was in 2014. During this drought, the 
authorities were forced to ration water supplies for residential and business use, which disrupted daily 
activities. An important factor in the water shortage experience of 2014 was the increasing demand for water. 
The demand for water in Malaysia has increased 60% in the time period from 1995 to 2010. Predictions 
suggest an overall increase of 113% by 2020 (Department of Environment (DOE), 2003) in (Fulazzaky, 2013). 
 The Sungai Selangor catchment in Malaysia (Figure 1) provides water resources to the people and 
industries in the catchment as well as to four million people and industries in Kuala Lumpur, Petaling, Gombak 
and Julu Selangor (Department of Irrigation and Drainage (DID), 2007) in (Fulazzaky, 2013), (RBM 
Engineering consultant, 2014). In total, 60% of the water resources from the Selangor catchment are 
transferred for use outside of the catchment. Therefore, the Selangor catchment is of particular importance to 
the water resources of Malaysia.  
 To minimize water shortages in the future there are two main options: 1) increase water resource 
capacity; and 2) improve the management of the current resources. Increasing capacity through, for example, 
constructing new reservoirs is costly and has major environmental impacts. To cope with present and future 

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

4868 ©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print)



  
          

  

 

demands it is essential to achieve optimization of the current supplies and improve the management of 
existing reservoirs (Ahmad et al., 2014).  
 One of the main aims of the Selangor Water Management Authority (Lembaga Urus Air Selangor: LUAS) 
is to improve the sustainability of water resource management within the Selangor catchment. LUAS have 
recognized the need to replace their manual reservoir release system with a decision-making system with 
increased efficiency and accuracy that will ensure minimum wastage of water resources. 
 

 
Figure 1. Map of the Sungai Selangor catchment, showing details of main abstract point SSP1 (inserts). 

 
 Research into how to optimize reservoir operations is plentiful, however there is a gap between the 
theoretical reservoir operation and the real-world implementation (Hejazi et al., 2008). In the research on 
reservoir release operations, there is a heavy focus on optimization algorithms but not enough focus on the 
needs of the reservoir operators who are looking for practical operational strategies (Ahmad et al., 2014). This 
gap is captured well in (Acreman, 2005) where different drivers of water managers and scientists are 
described. Water managers often have short time scales dictated by legislation, and seek simple consistent 
methods. In contrast, scientists often undertake long periods of study driven by innovation, and aim to produce 
replicable studies.  
 This paper provides an overview of an operational forecasting system where the best scientific solutions 
were matched to the needs, available data, facilities and resources of the reservoir managers at LUAS. Care 
was taken to consider the best solution in a holistic way, considering the whole forecast chain from the 
collection of real-time data and running the operational system, to communication and dissemination of 
warnings (WMO and GWP, 2013). Emphasis was placed on the needs and requirements of the operational 
staff in order to develop a user-friendly decision support tool. The new forecasting system provides short term 
dam release forecasts (3 days) and replaces the current manual reservoir release system. This new system 
aims to improve the sustainability of the water resources management. The advantages and disadvantages of 
potentially expanding this system to use ensemble forecasts, data assimilation and optimization algorithms 
are discussed.  
 
2 BACKGROUND 
 
2.1 Catchment description 

 The catchment of Sungai Selangor is located in the state of Selangor and is approximately 70 km north of 
Kuala Lumpur. The topography of the catchment is a mix of steep mountainous, hilly country and undulating 
low terrain (Hong and Hong, 2016). The climate in Selangor is tropical, with the southwest monsoon occurring 
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in April and May and the northeast monsoon occurring in October to December. Dry periods dominate in 
January to March and June to September (Hong and Hong, 2016). The annual average rainfall in the state of 
Selangor is 2285 mm with a large proportion falling in the mountainous region rather than on the plains (Desa 
and Daud, 1999) in (Desa et al., 2001). Approximately 42% of the average annual rainfall occurs during the 
northeast monsoon season and 28% during the southwest monsoon season (Desa, et al., 2001).  
 Sungai Selangor has a length of 110 km with the river source located at the slopes near Fraser’s Hill and 
Genting Highlands on the Main Range, from where it flows in a south-westerly direction to the Straits of 
Melaka (WWF Malaysia, 2000). The river has 19 tributaries and the total catchment size is approximately 
2000 km2. There are reservoirs formed by two dams in the upstream section of the catchment: Sungai 
Selangor Dam and Sungai Tinggi Dam. These two dams support water abstraction during the dry season 
(RBM Engineering consultant, 2014). Additional water resources are available to the catchment under the 
Hybrid Off-River Augmentation System (HORAS). Water from the HORAS system can be pumped into Sungai 
Selangor via the Operasi Pengepaman Air Kolam (OPAK). The flow of Sungai Selangor matches the rainfall 
patterns. High flows are recorded during the monsoons, with the northeast monsoon (October to December) 
resulting in the highest flow conditions. The lowest flows occur during the dry period of July and August 
(Fulazzaky, 2013).  
 The state of Selangor is one of the most populated regions in Malaysia; the estimated population of 2016 
is 6,298,400 (Department of Statistics Malaysia, nd.). The land use is a combination of urban, jungle and 
plantations including rubber, oil palm, paddy, maize and vegetable cultivation (Hong and Hong, 2016). Land 
use has changed rapidly in Malaysia in recent decades. From 1950, increasing agricultural production has led 
to the loss of forested land to agricultural land, first focusing on rubber, and since the 1960s, focusing on palm 
oil (Abdullah and Nakagoshi, 2008). Malaysia has also seen a growth in manufacturing since the 1980s which 
has led to rapid industrialisation in the state of Selangor, with an associated increase in urbanization and a 
decrease in agricultural land (Erickson, 1995). In Selangor, the current land use is 57% natural forest, 22% 
agricultural, 17% urban and 4% water (RBM Engineering consultant, 2014). Urbanisation is expected to 
increase further to allocate housing, commercial and industrial activities. Changes in land use such as the loss 
of forested land and urbanisation, will affect the ecological processes, including the hydrological cycle. The 
exact effect of land use change on the hydrology is difficult to be predicted accurately, but deforestation is 
associated with an increase in runoff (Siriwardena et al., 2006) and increased urbanisation is associated with 
increases in peak flows (Hundecha and Bardossy, 2004). These factors should be taken into account when 
selecting calibration data for hydrological models, and indicate that there is a necessity to periodically update 
the calibration accordingly.  
 
2.2 Current operational practice 
 Currently, observed data are being collected across the catchment and assessed manually by the 
operators who make decisions based on their assessment of the data and their experience. LUAS has seen 
an increase in water demand and has targets to reduce water wastage. This current method of decision 
making is not providing the accuracy and efficiency to meet the increase in demands and the minimum 
wastage targets.  
 
3 METHODS 
 The goal of the new decision support system (DSS) is to forecast the water level at the main downstream 
abstraction point, referred to as SSP1 (Sungai Selangor Phase 1), as presented in Figure 1. There are 
minimum and maximum water level thresholds at SSP1, between which the water level needs to be 
maintained. This can be achieved by releases from the Selangor Dam and Tinggi Dam. To maintain an 
optimal level of water at SSP1, the DSS provides the dam operators at Selangor Dam and Tinggi Dam with 
recommended reservoir releases for the next 36 hours.  
 To meet the requirement of forecasting water levels, the DSS has a river model at its core. The DSS has 
further modules which: 1) process observed data; 2) process forecast data; 3) estimate the reservoir releases; 
and 4) send out warnings. The dissemination and communication of warnings is an important part of this 
system, but is not covered by the technical focus of this paper. ICMLive was selected as the software tool to 
bring all of these modules together and take care of the automated processes including checking for new 
data, triggering river model runs and sending out warnings. A schematic overview of the DSS is presented as 
Figure 2.  
 
3.1 Coupled hydrological and hydraulic modelling 
 In selecting an appropriate model to forecast water levels at SSP1 the approach of (Booij, 2005) was 
taken: “find a model that is sufficiently detailed to capture the dominant process and natural variability, but not 
unnecessarily refined that computation time is wasted or data availability is limited.” There are broadly two 
types of hydrological models to choose from: physically based models and data-driven models. Both types of 
models have advantages and disadvantages, the reader is referred to (Todini, 2007) for a comprehensive 
overview. In the case of the Selangor catchment, there are limited historical data available which would limit 
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the training sets that could be created for a data-driven approach. Using a physically based model allows all a 
priori knowledge of the hydrological processes to be used in setting up the model, with the aim of reducing the 
uncertainty of the a posteriori forecasts (Todini, 2007).  
 A well-known simple physical river model is the hydrological model which represents the rainfall-runoff 
processes and often uses flow routing calculations to represent the river flow. In a hydrological model, the 
Saint Venant equations are simplified by removing the momentum conservation equation, for details the 
reader is referred to (Vorosmarty et al., 1989), (Listonet al., 1994), and (Coe et al., 2008). This results in 
important physical aspects of river hydraulics being lost, including backwater effects and looped stage-
discharge relations (Paiva et al., 2013). In the case of Sungai Selangor, which has structures like bridges and 
weirs, the loss of the backwater effect would lead to unreliable results in critically important forecasting points. 
For instance, the backwater flow due to the barrage at SSP1 would not be captured by a simple flow routing 
model. A 1D hydraulic model would be able to represent these important processes whilst having low 
computational demands and a low data input requirement (Pappenberger et al., 2005). At the core of this, 
DSS is a lumped hydrological model (representing the rainfall-runoff processes) coupled to a 1D hydraulic 
model (representing the river processes).  
 

 
Figure 2. Schematic overview of the DSS with blue boxes for data, green boxes for modelling processes and 

purple boxes for outputs. 
 
3.1.1 Probability Distributed Model (PDM)  
 In gauged catchments, the Probability Distributed Model (PDM), provides a pragmatic approach fitting 
between inherently complex, physically-based approaches, and simplified lumped modelling approaches; this 
probability-distributed approach considers the frequency of occurrence of certain hydrological variables used 
to derive algebraic expressions for the integrated flow response from the catchment (Moore, 1985). The PDM 
is a fairly general conceptual rainfall-runoff model which transforms rainfall and evaporation data to flow at the 
catchment outlet and was developed with operational applications in mind (Moore, 1985). The PDM model 
essentially distributes rainfall between runoff and recharge according to a soil moisture store. The runoff and 
recharge is routed via stores to the catchment outflow. One of the main advantages of the model is the use of 
a probability distribution rather than a single value for the soil moisture store. This represents the spatial 
variability in soil storage across the catchment and prevents threshold type behaviour. The model’s short 
computational run time and continuous soil moisture accounting model makes it suited to continuous 
simulation using incoming telemetry data for flood forecasting. The model can also use observed flow data 
from telemetry to update its internal soil moisture values in a process known as state correction, which is 
important for maximising the accuracy of the model results. 
  
3.1.2 Simple Runoff Model (SRM) 
 In the Sungai Selangor catchment, not all sub-catchments for which the rainfall-runoff process needs to 
be modelled are gauged. Although most of the catchments around the world are ungauged, setting up 
hydrological models for ungauged catchments remains a challenge (Bloschl, 2006). When no runoff data are 
available, keeping it simple is often the best solution. The Simple Runoff Model (SRM) is useful for 
deployment in catchments without any calibration data, or in urban areas if the runoff response is thought not 
to follow a soil moisture response. Eq. [1] presents the SRM equation in which the Effective Precipitation 
represents the runoff.  
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 ௘ܲ௙௙ ൌ ௖ܲ ∗ ܥܴ ∗ ሺ1 െ  ሻ [1]ܦܯܵ
 

where, 
 

 
௘ܲ௙௙ ൌ  ݊݋݅ݐܽݐ݅݌݅ܿ݁ݎܲ	݁ݒ݅ݐ݂݂ܿ݁ܧ

௖ܲ ൌ  	݊݋݅ݐܽݐ݅݌݅ܿ݁ݎܲ	ݐ݄݊݁݉ܿݐܽܥ
ܥܴ ൌ ሺ0	ݐ݂݂݊݁݅ܿ݅݁݋ܿ	݂݂݋݊ݑܴ	ݐ݊ܽݐݏ݊݋ܥ െ 1ሻ 

ܦܯܵ ൌ ሺ0	݊݋݅ݐܿܽݎܨ	ݐ݂݅ܿ݅݁ܦ	݁ݎݑݐݏ݅݋ܯ	݈݅݋ܵ െ 1ሻ 

 

 
 In this approach, catchment rainfall is multiplied by a runoff fraction which is determined by the user and 
by a soil moisture deficit (SMD) fraction. The SMD fraction may be fixed, but for rural catchments, more 
accurate results are to be achieved if a time series is supplied. Soil moisture data are not available in this 
catchment, therefore, using the concept of hydrological similarity, it is assumed that catchments close to each 
other will behave hydrologically in a similar manner; this assumption is known as spatial proximity (Bloschl, 
2006). Using these concepts, the soil moisture deficit time series from the PDM models in the gauged 
catchments can applied to the ungauged catchments. Although this method will increase the uncertainty of the 
forecasts, using calibration parameters from similar catchments in the same region is preferable over, for 
example, using parameters from donor catchments (Bloschl, 2006).  
 
3.2 Observed data 
 Malaysia has an extensive network of gauging stations which include rainfall and water level stations 
(Department of Irrigation and Drainage Malaysia, 2017). In the LUAS catchment, there are 17 rainfall stations 
and 13 water level stations along the section of river that is being modelled. These data are available hourly at 
15 minute intervals. There are rating curves available at the location of three water level stations, allowing the 
transformation from water level to flow. Further data are available for LUAS dam operators. For both dams, 
there are reservoir water level, dam spill and dam release data. These data are available as daily data. Water 
abstraction data are operationally available. The 17 rainfall stations and 13 water level stations are available 
operationally. The operational data is being provided to the LUAS server as simple text files. ICMLive checks 
for new data every hour (this can be increased if required) and before every run. In total, 76 gauges are 
connected to the live system of which 17 are rainfall gauges, 11 are water abstraction gauges, 4 provide 
reservoir data (spills and releases), 29 represent inflow water from the HORAS storage ponds and 15 water 
level gauges. An example of the observed flow, reservoir spills and observed rainfall data is presented in 
Figure 3. 
 

 
Figure 3. Example of the observed flow, reservoir spills and observed rainfall data for the Sungai Selangor 

catchment. 
 

 Challenges with the observed data include dealing with missing data. Missing data can occur due to 
various reasons such as instrument failure, power failure or communication line breakdown (Dastorani et al., 
2010). Dealing with missing data is a challenge for both the calibration of the hydrological models and the 
running of the operational system. Another challenge with observed data is dealing with measurement errors. 
Errors in measurements are unpreventable and can be described as random errors, systematic errors and 
mistakes due to misreading an instrument or instrument malfunction (BSi, 1986). Errors in measurement will 
affect the calibration process and can yield biased parameter estimation (McMillan et al., 2010). To limit this, 
the data were cleaned of any constant systematic errors and mistakes where possible.  
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3.3 Forecast data 
 The Malaysian Meteorological Department (MMD) operationally runs the Weather Research and 
Forecasting model (WRF) (NCAR et al., 2017). The WRF model was first released in 2004 with one of its main 
objectives being to advance the understanding and prediction of mesoscale weather systems including 
precipitation systems. The wide user community and dissemination of the WRF model has been successfully 
advanced since the release date. Currently the user group has over 30,000 registered users in 150 countries 
(NCAR et al., 2017). The MMD has extensively tested the forecast performance of the WRF model for 
precipitation forecasts in Malaysia, for more information, the reader is referred to (Ibadullah et al., 2013). 
Currently, MMD are running WRF model version 2.2, a hydrostatic model at a horizontal resolution of 3km 
over a forecast time period of 5 days. The WRF model will be updated to a later version corresponding with 
the upgrade of the high performance computer (HPC). In preparation for this, extensive tests of the WRF 
model version and ensembles have been conducted (Subramaniam et al., 2010). MMD provides precipitation 
forecast data for the Sungai Selangor sub-catchments in gridded ASCII files. Forecasts are provided twice per 
day, at 00 hours and 12 hours. ICMLive automatically finds and loads the new forecast data and uses the first 
three days of the forecast in its water level predictions. An example of the NWP precipitation forecast is 
presented as Figure 4. 
 

 
Figure 4. Example of the NWP precipitation loaded into the ICMLive system. 

3.4 Estimation of reservoir releases (ERR) 
As a starting point, the forecast reservoir releases of the previous day are supplied to the ICMLive 

system. The ICMLive system runs and produces forecasts of the water levels at SSP1 for the next 36 hours. 
The ERR compares the forecast water level with the optimal level and the tolerance level. If the forecast water 
levels at SSP1 drop beneath the threshold, the reservoir release time series is updated accordingly and this 
triggers a new ICMLive run. The newly produced forecast water levels at SSP1 are processed again by the 
ERR. If the levels are within the thresholds, the forecast reservoir release time series is then passed onto the 
reservoir operators as the recommended release. The ERR takes the minimum travel time of the water into 
account, which is 14 hours for the Tinggi dam, and 20 hours from the Selangor Dam to the barrage at SSP1 
(RBM Engineering consultant, 2014).  

 
4 RESULTS 
 
4.1 Hydrological calibration 

For the three locations where rating curves are available the PDM rainfall-runoff model was calibrated. 
Manual calibration was aided by using the automated PDM calibration tool. The calibration data were cleaned 
and prepared in calibration and validation sets. Low flow periods were prioritized whilst low flow simulation 
was continually checked. For all three locations, a calibration was achieved that met the standards set by 
LUAS. An example of the calibration for April 2013 is provided in Figure 5.  
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Figure 5. PDM calibration for April 2013. 

 
4.2 Dealing with missing operational data  

The ICMLive system needs to be robust in dealing with missing telemetry data. Especially during low flow 
periods, providing a realistic prediction of the water level at SSP1 is dependent on having accurate reservoir 
release telemetry data. To make sure that during these critical periods, the DSS can provide realistic results, 
when there are missing data, the ICMLive model is able to model the reservoir level and the abstractions 
using fallback data. These advanced backup systems make use of the real time control (RTC) available in the 
ICMLive software. The reservoir level was modelled and updated with the observations. When the 
observations were unavailable, the modelled levels were used instead. Figure 6 presents two examples of 
simulated and observed water levels in the Selangor reservoir. 

Fallback systems have also been put in place for missing abstraction data, based on the design 
abstraction. The abstractions using the RTC system allow only the available water to be abstracted from the 
river, thus preventing model instability.  

The model has been stress-tested for long periods of low flows and high flows to increase its robustness 
and provide LUAS with a DSS that meets its requirements for a robust operational system. 
 

 
Figure 6. Simulation of Selangor reservoir levels for two events. 

 
4.3 Forecasting levels at SSP1 

The ICMLive model simulated water levels at SSP1 based on the observed data, outputs of the coupled 
hydrological-hydraulic model, and the forecast reservoir released from the ERR. The ICMLive operator client 
allows the operators to look at the model results and observed data and interrogate them in various ways 
including viewing results on the GIS plan view, in tables and as graphs. Figure 7 shows the hydrograph of the 
water levels at SSP1 from a live run.  
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Figure 7. Modelled water level at SSP1 for the hindcast period (left of the vertical blue line) and the forecast 

period (right of the blue line), showing observed and forecast rainfalls (top hyetograph). 
 

5 DISCUSSIONS 
The DSS for Sungai Selangor has demonstrated how live data and forecasts from a range of sources can 

be combined with a simple reservoir optimization approach. The DSS has three main outputs: 1) The water 
level at SSP1; 2) Recommended dam release time series for the next 36 hours for Sungai Selangor Dam; and 
3) Recommended dam release time series for the next 36 hours for Sungai Tinggi Dam. Using the outputs 
from the DSS, water levels in the reservoirs can be maintained at an optimal level and the target for minimum 
wastage can be met. The system is easily modifiable, to take account of changes in the catchment and in 
LUAS requirements, and can be scaled if necessary, so that a larger area can be represented. The DSS 
should also be able to help LUAS to manage extreme weather situations, such as floods and droughts, as well 
as their available water resources to meet increasing demands under a changing climate.  

Operational models evolve over time to improve performance of the forecast, reflect changes in the 
catchment and meet the changing needs of the operators. The current ICMLive model provides a robust basis 
with a flexible setup suitable for evolving the model. Examples of evolving the model include updating and 
recalibrating the hydraulic and hydrological models if land use changes occur or additional data become 
available. For the future development of the LUAS DSS, three areas that could be explored are identified:  

i. Expanding the ERR to include optimization algorithms; 
ii. Data assimilation of observed water levels; 
iii. Including uncertainty bands, in the forecasted levels. 
The current ERR can be expanded to include state-of the-art optimization algorithms. One of the most 

popular types of optimization algorithms are Genetic Algorithms, also referred to as Multi-Objective 
Evolutionary Algorithms (MOEAs) (Deb and Pratap, 2002; Hadka and Reed, 2013; Kasprzyk et al., 2012; 
Kollat and Reed, 2006; Paton et al., 2014; Wang et al., 2014). Using MOEAs could be combined with 
visualization tools like the Many-Objective Robust Decision Making (MORDM) (Herman et al., 2014), Many-
Objective Visual Analytics (MOVA) (Fu et al., 2013) or Visually Interactive Decision-making and Design using 
Evolutionary multi-objective Optimization (VIDEO) (Kollat and Reed, 2007), which could aid decision making. 
MOEAs often rely on a high number of model reruns, which limits the application to the operational DSS due 
to computational and time restrictions. Research into the feasibility would be required and the benefits of an 
offline approach could be explored.  

Data assimilation or model updating is a process where the observations are used to condition the model 
results, for example using water levels (Madsen and Skotner, 2005). Data assimilation can be applied in real 
time and will lead to increase in the performance of the forecast, by improving the initial condition. ICMLive 
offers the Kalman Filter data assimilation approach. For an overview on the topic of data assimilation, the 
reader is referred to (Liu et al., 2012). 

To aid precautionary, proportional and robust decision making based on information from a forecast 
model, a representation of the uncertainty of that forecast can be helpful. The MMD will be issuing ensemble 
precipitation forecasts in the future, which allows the uncertainty of the precipitation forecast to be analyzed. 
To analyze the uncertainty arising from the hydrological and hydraulic models, it would be feasible to add an 
uncertainty quantification model to the current ICMLive setup. Examples of methods that could be considered 
are the Non-parametric data-based approach (Van Steenbergen and Willems, 2015) or the hydrological 
uncertainty processor (HUP) (Krzysztofwicz and Herr, 2001). For an overview on the topic of uncertainty, the 
reader is referred to (Klein et al., 2016). 
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6 CONCLUSIONS 
The development of this DSS has shown how live data and forecasts from a range of sources can be 

combined with a simple reservoir optimization approach. In this way, water levels in the reservoirs can be 
maintained at an optimal level and the target for minimum wastage can be met. The DSS should be able to 
help LUAS to increase the sustainability of the management of water resources in the Selangor catchment. 
The approach can be applied to other catchments to manage water resources in real time. 
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ABSTRACT 
 
Drinking water availability and quality is crucial for the well-being and the safety of people, particularly in case 
a disaster occurs. In fact, the provision of critical services in general, particularly of drinking water after an 
emergency, may significantly contribute to limit the intensity and the duration of crises and support the 
resilience of the whole community. Among the main issues that contribute to make emergency management 
and decision-making into complex processes, it is worth to underline the role of uncertainty, which mainly 
representing the lack of reliable data and information related to the impacts of a disaster after its occurrence. 
Particularly focusing on drinking water supply systems, the development of tools capable of operating in a 
framework of uncertainty, quickly identifying the spatial location of the most critical elements of a complex 
infrastructure, assessing risk levels and suggesting potential strategies to cope with a disaster, may be crucial 
for decision-makers. The present article describes the implementation, using the potentialities of GIS systems, 
of a vulnerability assessment model for drinking water supply infrastructures based on Bayesian Belief 
Networks (BBNs). The tool is implemented in L’Aquila case study, which is particularly relevant in the recent 
history of emergencies related to natural hazards and contributes to stress the key role of either modeling or 
information of the uncertainty in the emergency management. BBNs are capable to integrate and manage 
different classes of data and categories of information, and to deal with information having a different level of 
uncertainty. Uncertainty, which is integral to Bayesian analysis, can be used to provide decision-makers with 
reliable information to select the most suitable strategies to manage emergencies. In the present work, a 
quantitative approach to uncertainty modeling is provided as well, and coupling with modeling results should 
support the effectiveness of decision-making processes. 
 
Keywords: Bayesian belief networks (BBNs); vulnerability assessment; water supply systems; uncertainty 

management; disaster risk reduction (DRR). 
 
 
1 INTRODUCTION 

 Infrastructural systems support the activities of modern societies, particularly in urban areas, and 
guarantee the well-being and the safety of citizens both in ordinary conditions and during emergencies 
(Pagano et al. 2014, Galvan and Agarwal 2015). In case of emergency, they represent key assets capable of 
providing critical services and of supporting the resilience of a community (Haimes et al 2005, Ertugay et al. 
2016). 

 The need to protect drinking water from a wide variety of hazards has been emphasized by several 
authors (e.g. EPA 2015). The key requirement is to support management of infrastructural systems in order to 
ensure a minimum reliability level to the network (Fragiadakis and Christodoulou, 2014).  

 Risk cannot be fully eliminated, but it can be reduced (Zhou et al. 2014). Effective risk management 
strategies significantly depend on the understanding of risk dimensions, and particularly of vulnerability, which 
is often not well analyzed and understood. It can be basically defined as an expression of inherent states of 
the system that can adversely affect (cause harm or damage to) the system itself (Haimes 2006). Vulnerability 
reduction is thus a fundamental requirement in supporting decision processes to mitigate the impacts of 
potentially disastrous natural events (Pagano et al. 2014, Zhou et al. 2014).  

 Within these premises, the present article describes a vulnerability assessment tool for drinking water 
supply infrastructures, based on Bayesian Belief Networks (BBNs). The aim of the present work is to show 
how the tool can be used to provide information to decision-makers reducing the risk levels for drinking water 
supply infrastructures through a vulnerability assessment accounting also for data uncertainty. For this aim, 
BBNs potentialities have been integrated in GIS environment in order to support spatial modeling from data 
input until the visualization of the results. A criterion for an explicit analysis of uncertainty is discussed as well. 
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 The vulnerability assessment tool was implemented in L’Aquila earthquake (2009) case study, with the 
cooperation of the local water utility. The case study represents a milestone in the history of natural disasters, 
and a valuable example on the importance of their impacts on infrastructural systems. 

 Within this framework, the paper will be structured as follows. After the present introduction, a 
comprehensive state of the art is provided, mainly focusing on the potentialities connected to the use of BBNs 
in such field, also taking into consideration spatial modeling and uncertainty management. A description of the 
architecture of the developed tool is then provided. The relevance of L’Aquila case study and the management 
of its complex drinking water supply infrastructure in emergency, is discussed in Section 4. At last, the main 
results are summarized, which are also through the identification of an indicator to explicitly express the 
uncertainty related to results. 
 
2 STATE OF THE ART 

 Several successful applications of BBNs on drinking water supply infrastructures are mentioned in the 
scientific literature. BBNs were used to construct a model for pipe breaks based on learning from past breaks 
and covariate data, which proved insensitive to missing or incomplete data (Francis et al., 2014). A complex 
BBN-based integration of failure prediction models was proposed for water mains (Kabir et al., 2015). Pipe 
data, soil information and pipe breakage data were integrated into a GIS, which is used by the utilities for the 
visualization of results and for decision-making. A BBN-based model was developed to assess internal 
corrosion for oil and gas pipelines, integrating also the expert judgment (Shabarchin and Tesfamariam 2016). 
CBR risk related to a release of contaminants was examined as well as a consequence of physical damage. A 
decision support approach based on Fuzzy Bayesian Networks (FBNs) was proposed for assessing the state 
of existing pipelines in case of tunneling excavation (Zhang et al., 2016). A Bayesian model was also 
developed to assess infrastructural resilience (Hosseini and Barker, 2016). Different disruptive scenarios as 
well as potential strategies were simulated, and integrated with a sensitivity analysis of parameters. 

 BBNs are unable to natively provide a direct representation of the spatial relationships between variables. 
Nevertheless, they have been successfully used in recent years in many ecological and environmental 
applications (Gonzalez-Redin et al., 2016), and particularly in water resources management (Giordano et al., 
2015; Phan et al., 2016). 

 Furthermore, one of the key features of BBNs is that they are capable to support reasoning from 
uncertain evidence to uncertain conclusion, analyzing the occurrence of specific consequences based on 
situational factors, which represent observable aspects of the system (John et al., 2016). Uncertainty 
represents the lack of exact knowledge (Refsgaard et al., 2007). Causes of uncertainty (either related to data 
or model reliability, ambiguity in the understanding of specific phenomena, etc.) imply limitations in the 
capability to describe efficiently a given system, and to forecast its behavioral evolution. The correct 
assessment of uncertainty is particularly crucial in case of emergency response, where decisions based on 
uncertain and complex information may have lasting and significant consequences (Cheong et al., 2016). The 
uncertainties can be explicitly treated in BBNs by propagating them throughout the network up to the final 
node (Uusitalo, 2007; Uusitalo et al., 2015) using the dispersion of its Posterior Probability Distribution (PPD) 
through specific metrics (Marcot, 2012).  

 The adoption of BBNs to support decision-making in emergency management is also useful for the 
following additional reasons. Firstly, the capability to integrate new variables, states or knowledge (Gonzalez-
Redin et al. 2016; Landuyt et al., 2013; Haines-Young, 2011). Secondly, BBNs are capable to include various 
information (e.g. analytical models, expert knowledge, literature and historical data), as proved by several 
authors (e.g. Phan et al., 2016; Pagano et al., 2014; Chen and Pollino, 2012). At last, BBNs allow the 
probabilistic representation of interactions, which support to picture the explicit relationships between the 
variables of the models, thus facilitating communication to decision-makers. 
 
3 DESCRIPTION OF THE TOOL 

The probabilistic vulnerability assessment model aims at quantifying the vulnerability levels of drinking 
water supply systems with respect to both physical hazards (e.g. earthquakes, landslides) and CBR hazards 
(e.g. water contamination). As fully described in Pagano et al. (2014a) and Pagano et al. (2014b), the model is 
composed of a set of BBNs, used to assess both classes of vulnerability for all the elements of a drinking 
water supply infrastructure from the source to the tap. The BBN used to analyze the physical vulnerability of 
drinking water mains is shown in the following Fig. 1. Specific reference is made in the following to the 
proposed network, particularly in the discussion of the results of the case study. Vulnerability is interpreted as 
the results of four different mechanisms/causes (i.e. breaking, corrosion, joint extraction and security level). 
The variables in grey represent the ‘parent’ variables (input), whereas those in yellow are the ‘child’ variables 
(output). The state of the output variables is based on the propagation of probability (through the Conditional 
Probability Tables) from the state of the inputs. 
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Figure 1. BBN used for the physical vulnerability assessment of water mains. 

 
 Performing the vulnerability analysis requires the integration of several data and information, belonging to 

three main classes (as summarized in the scheme proposed in Figure 2), which are the physical data (related 
to infrastructural characteristics), environmental data and operative data. The toolbox G-Net, was developed 
in ArcGIS ® in order to support the spatial implementation of the model, and to facilitate the mapping and 
interpretation of the results and related uncertainty. Firstly, the toolbox can be used for the collection, analysis 
and attribution of input data with a spatial dimension. Secondly, it can be used to visualize and map the 
outcomes of the vulnerability assessment, with the related uncertainty. The conceptual scheme of the adopted 
approach and the key interactions among the different tools are described in the Figure 2. 
 

 
Figure 2. Spatial modeling procedure and uncertainty management. 

 
 Sensitivity analysis is an integral part of model description. It supports ranking and comparison of input 

variables in terms of variance or uncertainty reduction in a specified outcome variable. Sensitivity is calculated 
with input variables set to their default prior the probability distributions (Pagano et al., 2014) and represents a 
useful method for determining residual sensitivity behavior if one or more inputs are known.  
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 Performing the sensitivity analysis supports in the identification of the most influential variables of the 
BBN. This means that the more sensitive to a variable the model is, the more important is to collect 
information related to it. Having reliable data on key variables is a crucial requisite to reduce the uncertainty 
related to model predictions. 

 The following Table 1 summarizes the main outcomes of the sensitivity analysis for the model, performed 
with respect to the variable ‘breaking vulnerability’. 
 

Table 1. Results of the sensitivity analysis performed with respect to the variable ‘breaking vulnerability’. 
Node Mutual Info (Entropy Reduction) Percent  Variance of Beliefs Scenario 

Breaking Vulnerability 1.3976 100 0.363296  

External stress level 0.19371 13.9 0.044494  

Mechanical features 0.09952 7.12 0.02237  

Physical vulnerability 0.04676 3.35 0.01062  

Seismicity 0.04403 3.15 0.010404 [1], [3] 

Existing instabilities 0.02028 1.45 0.004848 [1], [3] 

Actual conditions 0.01908 1.37 0.004305  

Soil mechanical characteristics 0.01267 0.907 0.002837 [3] 

Hydraulic efficiency 0.01221 0.874 0.002945  

Safety level 0.00808 0.578 0.001839  

Extra-maintenance 0.0056 0.401 0.001275 [2], [3] 

OP/NP 0.00312 0.223 0.000758 [2] 

Dynamic loads 0.00269 0.193 0.000649 [1] 

Flexibility 0.00212 0.152 0.000485  

Hydraulic variability 0.00138 0.0991 0.000338  

Age/Design life 0.00111 0.0797 0.000256 [2] 

Joint extraction vulnerability 0.00084 0.0598 0.000204  

Maintenance: performed/scheduled 0.00077 0.0548 0.000175 [2] 

Joint type 0.00063 0.0452 0.000145 [2] 

Diameter 0.00059 0.0422 0.000137 [2] 

Depth 0.0004 0.0283 9.49E-05 [2] 

Joint frequency 0.00014 0.0102 3.25E-05 [2] 

Corrosion vulnerability 0.00004 0.00251 0.000008  

Pipe coating 0.00003 0.00235 7.9E-06  

Cathodic protection 0.00001 0.000767 2.6E-06  

Thrust restraint 0 0 0 [2] 

 
4 L’AQUILA CASE STUDY  

L’Aquila was struck by a 6.3 magnitude earthquake on 6 April 2009. Despite the relatively moderate 
intensity, several damages to structures and infrastructures were detected over a broad area (Kongar et al., 
2015). Drinking water supply infrastructures were significantly damaged as well (Pagano et al., 2017). 

 The water supply system of L’Aquila area is characterized by a significant complexity, described in details 
by Leopardi (2012). In order to fully understand the hydraulic behavior of the system and the functioning 
scheme, the staff of Gran Sasso Acqua S.p.A (GSA S.p.A), the local water utility, supported the research from 
a technical point of view. The local water supply system is constituted by multiple interconnected aqueducts, 
generally working for single municipalities or districts, but also highly interconnected to increase the flexibility 
of the whole system (Leopardi, 2012). An overview of the general scheme is proposed in the following Fig. 3. 

 Chiarino aqueduct (built in the 1920s) is the first modern system. It currently conveys a flow rate between 
85 and 160 l/s. During the 1950s, the whole system was significantly re-designed, according to an increased 
water demand, and two new aqueducts were built, which are La Ferriera (approximately 240 l/s) and Acqua 
Oria (approximately 250 l/s). The most recent and relevant system, completed in 1997, is the Gran Sasso 
aqueduct with a mean discharge of 450 l/s. Acqua Oria aqueduct is the only one withdrawing water from wells, 
while all the others collect and convey water from springs.  
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Figure. 3. Overview of the water supply system in L’Aquila area. 

 
 During the earthquake in 2009, Chiarino aqueduct was limitedly damaged mainly due to the stress 

induced at some weld joints by soil displacements. La Ferriera aqueduct also suffered limited damages, 
particularly on a reinforced concrete pipe, and at several weld joints. No damages occurred on other 
appurtenances of the water supply infrastructures (such as tanks or pumps). The major damage, instead, 
occurred on an important water pipe within the Gran Sasso aqueduct, which failed because crossing the 
surface trace of a fault activated during the earthquake (Rossetto et al., 2011; Dolce and Di Bucci, 2015; 
Leopardi, 2012, Pagano et al.; 2017). The steel joint of the pipeline (diameter 600 mm; pressure 25–30 atm) 
slipped off, and the cause of damage was identified as co-seismic rupture of Paganica fault crossing the pipe.  

 There were two main damages occurred on the Gran Sasso aqueduct in the aftermath of the earthquake. 
As a consequence, the operation of the whole system was interrupted. The complete closure of the system 
was needed to allow the restoration of infrastructural functionality; it also limited the problems originated by 
the widespread damages occurred in the city center. Nevertheless, this had strong impacts on the local 
community.  

 According to the interviews held with technicians involved during the emergency operations, the 
fragmented and uncertain knowledge available was a key limit in emergency operations. Infrastructural data 
were not readily available and most of the available data were often not reliable and directly usable, difficult to 
share and integrate. Emergency operators acknowledged the lack of reliable infrastructural information as a 
main issue hampering the effectiveness of emergency management strategies. 

 Based also on the lessons learned in L’Aquila earthquake, the tool was used to collect and integrate the 
main structural and environmental information related to the whole drinking water supply system of L’Aquila 
area, making them easily accessible to support emergency management. 
 
5 RESULTS AND DISCUSSION 

The main results of the vulnerability assessment procedure are represented in the following Fig. 4, which 
shows the most vulnerable elements of the network. It identifies the probability values associated with the 
state ‘high’ of the variable ‘breaking vulnerability’. 

 The Fig. 4 shows the presence of a significant number of elements with values of ‘breaking vulnerability’ 
ranging from medium to high, and the support in the identification of the most vulnerable pipes. The highest 
value of ‘breaking vulnerability’ was associated to the pipe of the Gran Sasso Aqueduct that was primarily 
damaged during the earthquake. Other elements characterized by a significantly high ‘breaking vulnerability’ 
were identified as well, and this result was discussed with GSA S.p.A. In most cases, the model proved 
capable to locate well-known local vulnerabilities and criticalities; in other cases, it also supported in advising 
on other potential unknown weak points of the system. Globally, the implementation of the model resulted to 
be helpful for the water utility in building a knowledge framework on the conditions of the infrastructural 
system, and thus in the identification of its main criticalities. Although the model is primarily intended for 
emergency management, it can be used in ordinary conditions as well, mainly for scheduling and prioritizing 
maintenance activities.  

The tool requires the integration of different classes of information, which should be collected well before 
the occurrence of a disaster. Not all the needed data might be readily available and accessible, and this may 
certainly require a pre-processing phase to increase the preparedness towards an extreme event. 
Nevertheless, one of the key features of BBNs is the capability to deal with data uncertainty. This means that 
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the model can be run if some variables are unknown, and the loss of prediction quality and reliability is 
estimated accordingly.  
 

 
Figure 4. Results of the vulnerability assessment model in L’Aquila case study. 

 
 A correct estimation of uncertainty associated with the model results is fundamental for decision-makers, 

since the awareness of model output reliability supports in identifying the most suitable strategies. Particularly, 
the issue of input data uncertainty is crucial to identify the amount of additional information that would be 
needed in emergency conditions to understand system evolution and to provide coherent results. An approach 
to identify the root causes of uncertainty and quantify its entity in Bayesian models is described in the 
following. 

 We assume that a basic measure of uncertainty is related to the number of alternatives and the 
characteristic of the probability distribution over the states of a variable (Das 1999). The Shannon entropy 
H(X) can be used for that purpose: 

      



n

1i ixlogPixPXH  [1] 
 

  
H(X) measures the average information required in addition to the current knowledge to remove the 

ignorance associated to the probability distribution of the variable X. If the current state of knowledge is 
complete, then H(X) =0. If it is total ignorance, the additional information required to pin down an alternative 
will be maximum. Higher values of H(X) are representative of a uniform output probability distribution, which 
may lead to more uncertain decisions. 

 The Shannon entropy was used mainly in referring to the main output variable, i.e. the ‘breaking 
vulnerability’. The values of H(X) were computed for the whole network and plotted along with the results of 
the vulnerability assessment, in order to describe the spatial variation of uncertainty. This coupling (Fig. 5) 
supports the identification of the most critical elements of the system (high vulnerability associated with low 
uncertainty) and the areas where additional information would be primarily beneficial (medium-high 
vulnerability values coupled with high uncertainty).  
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Figure 5. Coupled spatial representation of model results and related uncertainty 

 
 A key information for decision-makers operating in emergency conditions is related to the understanding 

of the impact of either information unavailability or uncertainty on results quality, and of the benefit associated 
to the potential introduction of additional data. The relevance of the Shannon entropy H(X) for uncertainty 
assessment was tested through specific simulations, analyzing the impacts of the lack of important input 
information on model results. Based on the results of the sensitivity analysis (Tab. 1), the following scenarios 
were built under the assumption of missing information for a significant subset of input variables.  

 U [1]: complete uncertainty is assumed for the variables identified with [1] in Tab. 1. Particularly, 
three highly influential environmental variables, i.e. ‘seismicity’, ‘existing instabilities’ and ‘dynamic 
loads’, are set to a uniform probability distribution, that is they are treated as unknown. 

 U [2]: complete uncertainty is assumed for the input variables identified with [2] in Tab. 1. Both 
structural and operative features are set to a uniform probability distribution. 

 U [3]: complete uncertainty is assumed for the input variables identified with [3] in Tab. 1. Four of the 
most relevant variables according to the sensitivity assessment (‘seismicity’, ‘existing instabilities’, 
‘soil mechanical characteristics’ and ‘extra-maintenance’) are unknown.  

The Shannon entropy H(X) was then used in the cited scenarios to quantify the cumulative uncertainty 
related to unknown inputs. Following the ‘chain rule’ for entropy, the global entropy of a group of random 
variables was computed as the sum of conditional entropies. A summary of the results is proposed in the 
following Tab. 2: 
 

Table 2. Shannon entropy values to assess uncertainty associated to the scenarios. 
Scenario Shannon entropy (input variables) 

BASE 0 

U [1] 0.067 

U [2] 0.012 

U [3] 0.083 

 
 The outcomes of the uncertainty analysis firstly suggest that although the scenario U [2] is characterized 

by a higher number of unknown variables, their impact on modeling results is lower if compared to both U [1] 
and U [3] scenarios, in which the main variables are unknown. Both U [1] and U [3] suggest that the 
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knowledge related to environmental conditions is a key requirement to perform a reliable vulnerability 
assessment. Furthermore, referring particularly to the scenario U [3], the highest value of the Shannon 
entropy is the representative of a more critical condition, due to the highly uncertain set of available input data.  

 Coupling infrastructural vulnerability and uncertainty associated to the results is a key requirement to deal 
with emergency conditions. This information supports decision-makers to schedule (and prioritize) actions 
according to the vulnerability levels of the system. The results can be used in ordinary conditions as well, 
mainly to help water utilities in the selection of the most suitable strategies for DRR. The information related to 
the input uncertainty are particularly useful in order to identify the locations, where additional data and 
investigation would be of worth. 
 
6 CONCLUSIONS 

 This work proposes a vulnerability assessment model for drinking water supply systems based on 
Bayesian networks, integrated in GIS. Specifically, the work shows how spatial analysis could support 
decision-makers during emergency management, in order to identify and select the most suitable strategies to 
cope with the impacts of disasters. To this aim, the tool has been implemented to assess the vulnerability of 
the water supply infrastructures in L’Aquila area, which was struck by an earthquake in 2009. The modeling 
activities were carried out in tight cooperation with both the Italian Department of Civil Protection and a group 
of engineers working for the local water utility. Although the model was mainly meant to support decision-
makers in dealing with drinking water supply infrastructures emergencies in case of disasters, it proved useful 
for ordinary management as well. 

 The work discusses also the introduction and adoption of the Shannon entropy, a parameter computed 
considering the PPD of the output variable, as a measure of uncertainty. It defines the average information 
required in addition to the current knowledge to remove the ignorance associated to the probability distribution 
of the input variable. According to the results of the experiences described in this work, one of the main 
advantages related to the use of BBNs is directly related to the capability to deal with the uncertainty 
associated to the lack of input data, which is typical of emergency conditions (due to the difficulties in data 
collection), and to take it explicitly into account in the analysis of the results. Coupling the results of the model 
with an explicit measure of uncertainty support decision makers in properly taking into account the reliability of 
model predictions. 
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ABSTRACT 
 
The global demand for water continues to grow, driven by population growth, urbanization and rising 
standards of living, food and energy security. To achieve and maintain sustainable water resources under 
these unprecedented demands requires both careful management and protection of the resource and efficient 
allocation of water to match the demands in both space and time. In this paper, we compare two methods of 
modelling water allocation for water resources management, applying MIKE HYDRO Basin to a highly 
modified and simplified system based on an actual case study in Sri Lanka. The first is a commonly used 
global ranking algorithm, based on the assumption that the water user demands can be assigned a priority, 
irrespective of their location in the river basin and water is distributed according to this global priority. The 
second uses penalties rather than ranks. Penalties are assigned to units of water user and hydropower deficit 
as well as the reservoir storage depletion and the water allocation problem solved using linear programming. 
The initial results show that both methods appear to be efficient in solving the water allocation problem posed. 
The global ranking approach is easily understood and can be applied in a straightforward manner, once the 
priorities amongst the different users are identified. The penalty approach requires calibration of the penalties, 
which may be tedious for practitioners and may well influence the overall results. We propose using the 
ranking approach to perform an initial screening of water allocation options and constraints that could then be 
refined by using an optimization method such as the linear approach with penalties evaluated in this study. 

 
Keywords: Water allocation; optimization; global ranking; linear programming; penalty function approach. 

 
 

1 INTRODUCTION 
 As the demand for water continues to grow, because of population growth, urbanization and rising 

standards of living, the sustainable development of water resources requires both careful management and 
protection of the resource and efficient allocation of water. In river basins or countries where the water 
resources are scarce and new permits can only be assigned by revoking others, a global priority solution is 
needed. In other places, where the water is distributed according to priority of importance (e.g. water supply is 
more important than irrigation) or based on equitable sharing (e.g. where a shortage of water is evenly 
distributed among competing users), more complex algorithms are required.  

 With the increasing complexity of water resources management and planning projects, practitioners and 
decision-makers use hydrological models to assess allocation options and consequences. In many cases, 
reservoirs or systems of reservoirs are central to the management of surface water resources and at the same 
time, the most complex element of the water resources system. Reservoirs allow the spatial and temporal 
redistribution of the water but their operation must often address multiple and conflicting demands for water, 
such as industrial, municipal, and agricultural water supply, flood control, hydropower, etc. Simonovic (1992) 
has comprehensively described the challenges of reservoir systems operation in water allocation models. 
There is, therefore, an increasing need to deal with more complex water allocation modelling in generic 
manner.  

 Such water allocation problems can be solved by either simulation, optimization or combination of both – 
the optimisation-simulation approach. Simulation models solve the flow distribution as a water balance 
problem. Reservoir operation is modelled via a set of rule curves, which guide the release of the reservoir by 
restricting supply to some users under certain conditions of low storage. Optimisation models require that the 
water allocation problem, to be solved, can be expressed in the form of an objective function. The application 
of optimisation models has been widely documented in the literature (Labadie, 2004; Loucks, 1992). 

 The most common approach has been to use linear programming (LP) for finding the optimal flow 
distribution in a river system given a set of constraints defined by the network, allocation rules, etc. This 
approach requires that the penalties (also referred to as “costs”) are assigned correctly. The process of 
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identifying the correct penalty or cost for each elements of the system can become very difficult when dealing 
with systems of complex networks and allocations, especially for practitioners with less theoretical knowledge. 
Chou and Wu (2014) describe a variant of the linear programming, network flow programming (NFP) and 
concluded that it could become an efficient alternative to the simple LP approach, where the possibly time-
consuming and difficult trial and error process of identifying penalties can be avoided. However, non-NFP 
constraints, such as water transmission losses and flow routing, must be handled by using iterative methods. 
Ilich (2009) has described the limitations of such approaches.  

 Cai et al. (2001) described the use of genetic algorithms (GA) in combination with linear programming, 
where they stated that “The key idea is to identify a set of complicating variables in the model, which when 
fixed, render the problem linear in the remaining variables”. This approach can be quite complex in terms of 
selecting these complicating variables, and more generally GA algorithms are computationally demanding, 
with the risk of finding only a local optimum.  

 Loucks et al. (2005) recommended the use of optimization methods as a screening tool and then further 
refine the selection by using the simulation approach. However, applying optimisation and then simulation 
model on the same system might be subject to inconsistencies, due to the different approaches. As mentioned 
above, combined optimisation-simulation approaches have also been proposed. Sechi & Sulis (2009) 
concluded that methods using simulation-optimisation approaches are not “truly general-purpose tools”, since 
a “tuning phase is needed to when using the proposed approach” on real case applications. 

 There appears to be a gap between the methods presented in the research literature and results 
achieved in real-world applications (Labadie, 2004). This discrepancy was already recognised in earlier 
literature. Loucks (1992) identified that communication as the key element in the successful implementation of 
water resource planning. This is supported by Simonovic (1992), who concluded that utilizing knowledge-
based technologies could be one solution in reducing the gaps between theory and practice. In the meantime, 
applications of decision support systems have become more widespread (e.g. Sørensen et al., 2016) and 
been implemented around the world and are part of many models (Assaf et al., 2008). Nevertheless, 
difficulties remain in the application and generalisation of theoretical models.  

 To address the complexity of real-world water allocation for water resources management, we present a 
ranking based model approach, which does not require any tuning of penalties for computing the water 
balance and reservoir operation. This approach is compared to a more commonly applied method to solve the 
flow distribution that uses linear programming. The two methods are evaluated for a test case, using the water 
resource systems modelling tool, MIKE HYDRO Basin (DHI, 2014).  
 
2 METHODOLOGY 

 MIKE HYDRO Basin is a general water resources modelling tool developed specifically to assess water 
resources and constraints and the impact of water resources management measures. This tool represents the 
water resource system as a network of branches and nodes. The branches represent, for example, river 
reaches, while the nodes represent confluences or a location where certain water activities occur (Figure 1). 
These activities can include multipurpose reservoirs, withdrawals for water supply and irrigation, effluent 
discharges, diversion canals, gauging stations or low flow control points. The tool supports rainfall-runoff 
modelling, different routing methods along the branches and multiple, multipurpose reservoirs. Individual 
reservoirs can simulate the performance of specified policies using associated operating rule curves or the 
actual performance based on measured data. Applications of MIKE HYDRO Basin, previously MIKE BASIN, 
including climate changes impact assessments (Butts et al., 2016), economically efficient ways to meet WFD 
requirements (Riegels et al., 2011) and seasonal forecasting (Butts et al. 2016).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Schematic of the MIKE HYDRO Basin model for different water users, reservoirs, water activities 
and hydrological processes.  
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2.1 Global ranking 

 The global ranking algorithm is based on the assumption that the water user demands, irrespective of 
their location in the river basin, can be assigned the priority and water should be distributed according to this 
priority. In some countries, this is a common water allocation paradigm, based on the date they were given a 
particular water right (first in time), also called "riparian rights". This is distinct from the simpler method, which 
solves the water allocation problem from upstream to downstream (first in line). This means that when high 
priority users are located downstream of a low priority user, the latter may take the water as it passes the 
node and might potentially leave no water to the high priority users. 

 In the global ranking algorithm, also called global priority, as implemented in MIKE HYDRO Basin, each 
user (or demand point) is assigned a rank and the model solves for the water distribution by first assigning 
water to the user marked with the highest priority, and the amount of water flowing in upstream nodes is then 
earmarked (DHI, 2014). The algorithm then checks the next highest ranked user and so forth. Essentially, a 
priority parameter is set for each user. This process is repeated for each time step. 

 In this ranking concept, the water users (including hydropower plants) are assigned a unique rank. The 
highest priority user is assigned the first rank. Actually, the supply connections to users are assigned a rank 
rather than directly to the user itself. In cases where a user has several sources, each supply connection can 
be assigned a different source. Reservoir storages are divided into several zones with different ranks. The 
users with rank lower or equal to the rank of the zone will be supplied by the reservoir storage. As shown in 
Figure 2, the reservoir is divided into five zones: 

 Above flood control level, water is not stored, 
 Above “Level #2” (guide curve with ranking priority 2), storage will be used to supply users with 

ranks inferior or equal to 2, 
 Above “Level #1” (guide curve with ranking priority 1), storage will be used to supply users with 

ranks inferior or equal to 1, 
 Above the top of dead storage and until “Level #1”, no supply, 
 Below the top of dead storage, no supply. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Reservoir allocation zones. 
 

 The steps for solving the water allocation model are as follows: 
 Naturalised flow: The naturalised flow of the network corresponds to the flow in the river network 

without any intake from users. The naturalised flow gives information about the water available at 
any node in the network; 

 Allocated water to users: After calculating at each river node (calculation point) of the naturalised 
flow, the user with the highest priority will be assigned water based on its demand. If necessary, 
reservoirs will be forced to release water if the ranking guide curve allows supplying such a user. 
When several reservoirs can supply to the same user, the closest upstream reservoir (in number of 
calculation points) will be asked first.  

 Then the following sequence is calculated, as shown in Figure 3: 
1. Assign water based on the demand and availability at extraction node, 
2. Flush return flows, 
3. Comply downstream flow by updating the flow available and unallocated water at all downstream 

nodes of the extraction point, 
4. Update unallocated water at all nodes upstream of the extraction point, 
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5. Fix unallocated water, so it is a monotone non-decreasing function of the stream flow network. This 
mechanism handles ambiguities that could arise upstream of confluences, where both branches (i.e. 
the chain of upstream reaches) could support a demand downstream of the confluence. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Calculation steps for water allocation at each calculation point processes. 
 
2.2  Penalty approach with linear programming  

 Penalties are assigned to units of water user and hydropower deficit as well as reservoir storage 
depletion. The aim of water allocation optimisation model is to minimize the total penalties in the entire system 
at each time step. The problem is formulated as a linear problem where the objective functions are solved 
under given constraints. The objective function are minimised by optimising a set of decisions variables (DHI, 
2013). The linear solver, lp_solve, has been tailored to be accessed from Excel (Buttrey, 2005). At each time 
step, the decision variables are optimised. The decision variables are divided into two groups, reach flow at 
each simulation time, ݍ௞ and  reservoir storage in each zone at the end of each simulation time step, ௜ܵ,௝; 
where k is the reach number, i the node number and j the penalty zone number. 

 Reach flows are sufficient to determine water distribution in the system. However, these cannot control 
storage change in the reservoirs. They do not have any influence in determination of how much water should 
remain in each reservoir at the end of this time step. Therefore, the second type of decision variable was 
introduced. Each reservoir is divided into several penalty zones and storages in each penalty zones at the end 
of this simulation time step are selected as another set of decision variables. 

 The solver shall minimize the total penalty at each time step for the entire system. Penalties are split into 
two groups, water users and reservoirs. For water users, the water user deficit at each time step is multiplied 
by the water user penalty. The deficit is calculated as the difference between the amount of water demanded 
and the amount supplied. For reservoirs, the depletion in storage in each reservoir’s penalty zone is multiplied 
by the associated penalty. The depletion in storage is the difference between the reservoir outflow and the 
sum of the inflow from the river network and the catchment runoff. 

 The objective functions are: 
 
ܨܱ  ൌ ∑ሼሾ݊݅ܯ ሺ݀݊ܽ݉݁ܦ௜ െ	ܳ݅݊௜ሻ ∗ ௜ݕݐ݈ܽ݊݁ܲ

ௐ௎
௜ ሿ ൅ ሾ∑ ሺܳݐݑ݋௜ െ

ோ௘௦
௜

	ܳ݅݊௜ െ ௜ሻݓ݋݈݂݊݅ݐܽܿ ∗   ௜ሿሽݕݐ݈ܽ݊݁ܲ
[1] 

 
   
where ݈ܲ݁݊ܽݕݐ௜	 is the penalty at node  i, ݀݊ܽ݉݁ܦ௜	 is the demand at node i, ܳ݅݊௜	 is inflow at node i, ܳݐݑ݋௜	 is 
the outflow from node i, and ܿܽݓ݋݈݂݊݅ݐ௜	 is the catchment inflow at node i. The nodes are either water user 
nodes or reservoir nodes. 

 The objective function formulation can be simplified by removing the constant terms (water user demand 
and catchment runoff), as shown in Eq. [2]. By reversing the signs, the objectives can be formulated in term of 
obtaining a maximum rather than a minimum, as represented by Eq. [3]. 
 
ܨܱ  ൌ ∑ሼሾ݊݅ܯ െ	ܳ݅݊௜ ∗ ௜ݕݐ݈ܽ݊݁ܲ

ௐ௎
௜ ሿ ൅ ሾ∑ ሺܳݐݑ݋௜ െ	ܳ݅݊௜ሻ ∗

ோ௘௦
௜

  ௜ሿሽݕݐ݈ܽ݊݁ܲ
[2] 
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ܨܱ  ൌ ∑ሼሾݔܽܯ 	ܳ݅݊௜ ∗ ௜ݕݐ݈ܽ݊݁ܲ

ௐ௎
௜ ሿ ൅ ሾ∑ ሺܳ݅݊௜ െ ௜ሻݐݑ݋ܳ ∗

ோ௘௦
௜

  ௜ሿሽݕݐ݈ܽ݊݁ܲ
 

[3] 
 

 Finally, the reservoir storage is divided into several penalty zones. Hence, the equation of the objective 
function can be reformulated as follows: 
 
ܨܱ  ൌ ∑൛ሾݔܽܯ 	ܳ݅݊௜ ∗ ௜ݕݐ݈ܽ݊݁ܲ

ௐ௎
௜ ሿ ൅ ൣ∑ ∑ ൫ ௜ܵ,௝ െ

௭௢௡௘
௝

ோ௘௦
௜

ݐ݊݁ݎݎݑܥ ௜ܵ,௝൯/∆ݐ ∗   ௜,௝൧ൟݕݐ݈ܽ݊݁ܲ
 

[4] 
 

where ݈ܲ݁݊ܽݕݐ௜	 is the penalty at node  i, ݈ܲ݁݊ܽݕݐ௜,௝	 is the penalty for zone j at reservoir node  i,  ௜ܵ,௝	 is the 
storage for zone j at reservoir node  i, ݅ܵݐ݊݁ݎݎݑܥ,݆	 is the current storage penalty for zone j at reservoir node  i, 

and	∆ݐ is the simulation time step.  
 The set of optimal decision variables are found subjected to the system constraints. The system 

constraints are used to ensure: (a) the mass balance at each river node, water user, hydropower node or 
reach, (b) the operational rule at reservoir that the water level shall not be below the dead storage or exceed 
the dam crest, and (c) meet the capacity limitation in reaches or at the outlet of reservoirs. 
 
3 TEST CASE  

 To obtain a realistic test case we have taken, as a starting point, a highly complex model setup 
developed in MIKE BASIN, an earlier version of MIKE HYDRO Basin. As shown in Figure 4, the original 
model, developed in a separate study, covered a large part of Sri Lanka (DHI, 2013). This system is clearly 
too complex, for this study if we are to properly understand how the two approaches perform. We therefore 
focused on a smaller subsystem within the eastern part of the system, the inset as shown in Figure 4. This 
subsystem was then further simplified and modified so that we have complete control on the water budget. In 
this simplified version of the subsystem, six major water users and two active reservoirs are included. 
Penalties and corresponding ranks have been assigned to the six water users of the system. A higher penalty 
corresponds to a lower rank. For water users with identical penalties, it has been necessary to arbitrarily 
assign a rank. Unlike penalties, the ranks have to be unique.  
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Figure 4. A schematic of the realistic but simplified model subsystem used in this study (inset in the bottom-
left corner). This modified subsystem was derived from part of a complex water allocation carried out in 

another study. 
 

 To assess the performance of the two models, it is necessary to compare how water users are supplied 
based on the water availability. Rules to prioritize the water allocation using the two approaches were setup by 
translating the penalties to ranks used in the global ranking approach. Several scenarios have been 
performed. 

 The active reservoirs are represented by a set of guide curves or penalty curves as illustrated in Figure 5. 
Li are the penalty levels used by the linear programming,  CGi are the guide curves used by the global ranking 
algorithm, R is the ranks of the users in the global ranking algorithm and P is the penalty in the linear 
programming. As an illustration, the storage between L3 and L2, will be for user with a rank inferior or equal to 
5 in the ranking approach and will be applied a penalty of 2 in the penalty approach. Both models can handle 
seasonal variation of the guide/penalty curves. Curves are parameterised with monthly values. Figure 6 
illustrates the seasonal variation of the curves, where the penalty curves are shown in blue and the guide 
curves for the ranking approach are shown in red. 
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Figure 5. Guide/Penalty curves in one of the subsystem reservoirs. 

 

 
Figure 6. Seasonal variation of Guide/Penalty curves for the reservoir shown in Figure 5. 

 
4 RESULTS 

 To assess the performance of the two models, it is necessary to compare how the water users are 
supplied based on the water availability. Rules to prioritize the water allocation using the two approaches were 
setup by translating the penalties to ranks used in the global ranking approach. Several scenarios have been 
performed. The first or baseline scenario is used to verify that there were no discrepancies in the application 
of the two methods. In this scenario, a simple upstream/downstream (inline) approach could be applied as the 
users with the highest priority are located upstream and those with the lowest downstream.  

 The results of the two approaches for the baseline scenario are compared in terms of water user deficit, 
the amount of water that was not delivered to the user and used water, the water delivered and consumed by 
the users (return flow has been subtracted), as shown in Figure 7. The seasonal water user deficitand 
average deficit for each month is compared in Figure 8. These results show the two approaches are very 
similar, as would be expected in this baseline scenario. This provides a verification of two methods and 
demonstrates consistency in the way we have parameterized the two methods in this simple case. In the 
second scenario, presented here, referred to as scenario A, the ranks and the corresponding penalties of the 
highest priority users located upstream have been modified to become the lowest priority user. The results for 
scenario A, in terms of water user deficit and used water, are shown in Figure 9 and the corresponding 
seasonal water user deficit in Figure 10. The same deficit occurs for the water user with rank 1. This is due to 
its location upstream in the river network, where no resource is available even with highest priority. However, 
in contrast to the baseline scenario, differences can be observed in the seasonal variation of the water user 
deficit of the lowest priority (rank 5.1).  

 Figure 11 shows the simulated reservoir levels for scenario A, in one of the active major reservoirs. Small 
differences are also observed here for the results from the two approaches. The likely explanation is that the 
ranking approach appears to be stricter when it comes to the reservoir operation, since no deviations from the 
guide curves are permitted. The differences in the simulated behaviour of the reservoirs to slightly different 
water deficits for the lowest priority users, which are the last ones to be affected by lack of water. 
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Figure 7. Results of the baseline scenario in terms of water user deficit (a) and used water (b). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Seasonal water demand deficit in the baseline scenario for each of the different users using ranking 
(red) and penalty (blue) methods. 

 

Figure 9. Results for scenario A in terms of water user deficit (a) and used water (b). 
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Figure 10. Seasonal water demand deficit in the scenario A for each of the different users using ranking (red) 

and penalty (blue) methods. 
 

 
Figure 11. Reservoir levels for scenario A obtained using both the penalty and ranking approach. 

 
5 CONCLUSIONS 

 In this study, we have developed a global ranking approach for water allocation with the MIKE HYDRO 
Basin water resources modelling tool. This approach is compared to a more commonly applied method to 
solve the flow distribution that uses linear programming with penalties. To provide test that is realistic, on the 
other hand, straightforward to be understood and analysed on the other, the two methods were evaluated for 
a highly modified and simplified test case, based on a subsystem of a more comprehensive water resource 
study in Sri Lanka. Both methods appear to be efficient for solving water allocation problems. The global 
ranking approach is easy to understand and can be applied in a straightforward manner once the priorities 
between users have identified. The penalty approach requires calibration of the penalties, which may 
influence the overall results and can be a tedious task for practitioners. 

 Therefore, the ranking approach appears to be a more efficient method for an initial screening of the 
water allocation. This could then be refined by applying an optimization method, such as the linear 
programming approach, which seems to be better at solving more complicated systems, for example, with 
very complex networks including diverted and reconnected networks. On the other hand, the linear 
programming approach will only be able to solve linear problems, which could limit the use of hydropower 
calculation based on energy units. In future work, we intend to investigate the applicability of these two 
approaches in an actual water allocation problem. 
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ABSTRACT  
 
In this work, pomegranate peel (PP), the by-products that abundantly available from the fruit processing 
industries, has been applied as the renewable resources for the preparation of low cost, eco-friendly and high 
quality activated carbons. A comparison of the activating conditions, phosphoric acid and phosphoric 
acid/steam assisted activation on the physical and chemical properties of PP derived carbon adsorbents has 
been evaluated. The prepared adsorbents were featured as a mean of nitrogen adsorption-desorption curve 
and Fourier Transform Infrared Spectroscopy (FTIR). The adsorptive behavior was examined with respect to 
the innovative treatment of acetaminophen, a widely applied pharmaceutical, characterized by the acute 
toxicity, carcinogenic and mutagenic effects. These newly prepared activated carbons showed the high BET 
surface area and total pore volumes of 1354 m2/g and 0.705 cm3/g; and 1819 m2/g and 1.040 cm3/g, 
respectively. The adsorption performance illustrated an encouraging result towards the adsorptive removal of 
acetaminophen. The equilibrium data were best confronted to the Langmuir isotherm model, with the 
monolayer adsorption capacities of 85.49 mg/g and 189.61 mg/g for PAC and PSAC, respectively. The 
obtained findings supported the high economical and technical feasibility of PP derived activated carbons as a 
viable solution for the effective treatment of pharmaceutical contaminants.  

  
Keywords: Acetaminophen; activated carbon; adsorption; phosphoric acid; pomegranate peel; steam.  

 
 
1 INTRODUCTION 

Concerning about environmental protection has increased over the year from a global view point, today, 
the emission of pharmaceutical residues on the surface and subsurface water is a serious agenda among the 
environmental scientists (Jennifer et al., 2017; Ashfaq et al., 2017). In particular, acetaminophen, or 
commonly known as paracetamol, is the most widely applied analgesic and anti-inflammatory drug for the 
relief of fever, severe pain and flu remedies (Andreozzi et al., 2003; Yang et al., 2008). Acetaminophen is 
commonly detected in the water streams, notably rivers, wells and groundwater tables (Roshanfekr et al., 
2015; Kummurer, 2009). As an essential resource of daily life and ecosystems, the issue of water pollution is 
allied to the aesthetic attention by the environmental protection authorities, with the continuous exploration of 
efficient water treatment technology as a convenient response to the new emerging contaminants. Among all, 
activated carbon adsorption process has prevailed to be an effective treatment method for the effective control 
of water pollutants, mainly ascribed to the large accessible surface area and pore volume, and the great 
regenerative potential (Ruiz et al., 2010). However, the wide scale application is hampered by the high 
operating cost associated with the available commercial activated carbons. Extensive researches have been 
devoted to the development of agricultural biomass derived carbonaceous adsorbents (Ghaedi et al., 2012). 
The abundant availability of agricultural by-products makes them the good sources of raw precursors for 
preparation of low cost activated carbons (Foo and Hameed, 2012a). In such perspective, pomegranate is an 
important fruit crop grown in the Mediterranean countries, which are commonly consumed as fresh, or 
processed as juice, jams and wine. Pomegranate peel, a major by-product emitted from the pomegranate 
processing industry would serve as a potential alternative raw precursor for the preparation of low cost 
activated carbons (Radaei et al., 2014; Ghaedi et al., 2012; Amin, 2009). 

The preparation of activated carbons is usually implemented by the physical or chemical activation or a 
combination of both (Klijanienko et al., 2008). Physical activation involves the pyrolysis (carbonization) of the 
initial raw precursor under inert atmosphere, subsequently by the activation at relatively high temperatures of 
above 800 °C under the flow of carbon dioxide or steam (Budinova et al., 2006). Chemical activation is 
conducted with the presence of chemical reagents at a much lower temperature of 400 to 600 °C (Lupul et al., 
2015). In particular, phosphoric acid assisted chemical activation has been related to the formation of 

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print) 4897



 
 

  

 
 

phosphate and polyphosphate bridges, leading to the connection and cross linking with the biopolymer 
fragments (Mestre et al., 2011). In contrast, phosphoric acid activation under steam flow has been associated 
with a better development of porous structure, a wider pore size distribution range, and greater yield and 
resistance to attrition. In this sense, this study was undertaken to evaluate the viability of pomegranate peel as 
a renewable precursor for the preparation of eco-friendly activated carbon by both phosphoric acid and 
phosphoric acid/steam assisted activation. The structural, functional and surface characterizations were 
performed. Moreover, the novel application for the adsorptive removal of acetaminophen, with the modeling 
analysis was elucidated. 

 
2 MATERIALS AND METHODS 
 
2.1 Adsorbate 

Acetaminophen, also known as N-(4-hydroxy- phenyl) ethanamide, was selected as the model adsorbate 
in this work. The standard stock solution was prepared by dissolving the adsorbate in ultra-pure water, and 
the working solutions were prepared by serial dilutions. The physico-chemical properties of acetaminophen 
are given in Table 1. 
 

Table 1. Physico-chemical properties of acetaminophen. 
Properties Description 

Molecule structure 

 
Molecular formula C8H9NO2 
Molecular weight (g/mole) 151.16 
pKa 9.86 
Molar volume (cm3/mole) 120.90 

 
2.2 Preparation of activated carbons 

Pomegranate peels (PP) used in the present study was acquired from a local plantation area in Gabes, 
Tunisia. The initial raw precursor was washed extensively with distilled water, dried, grinded and sieved to a 
particle fraction of 2 to 5 mm. The preparation of activated carbons was performed by the impregnation of PP 
with phosphoric acid (50%) at the predetermined weight ratio of 4:1. The impregnated samples were 
carbonized in a tubular furnace under inert condition and activated at 400 °C for 2 h under the flow of nitrogen 
or nitrogen/steam. These activated products were rinsed with deionized water until the pH of the filtrate 
solution reached to the neutral pH. These newly prepared PP derived adsorbents via phosphoric acid and 
phosphoric acid/steam induced activation are defined as PAC and PSAC, respectively.  

 
2.3   Physical and chemical characterizations 

The initial PP was analyzed with respect to the carbon content using an elemental analyzer (LECO-
CHNS-932) and thermogravimetric analyzer (DSC Q600).The surface physical properties of the newly 
prepared PAC and PSAC were examined using an Autosorb surface area analyzer (Quantachrome) with N2 
as the adsorbate at -196 °C. The Brunauer–Emmett–Teller (BET) surface area, total pore volume, mesopore 
and micropore volumes were deduced using the t-plot method. The surface functional groups were detected 
by the Fourier Transform Infrared (FTIR) spectroscopy (FTIR-100, Shimadzu) using the KBr pellet method 
within the scanning range of 4000 to 400 cm-1. 
 
2.4   Bach equilibrium studies 

The batch adsorption experiments were carried out in a set of Erlenmeyer flasks containing 0.01 g of 
carbon adsorbents and 50 mL of acetaminophen solutions (ACP) with the initial concentrations range of 10 to 
300 mg/L in a water bath shaker at 30 °C and 120 rpm. The concentration of ACP was withdrawn at 
predetermined time intervals, and was measured using a UV-vis spectrophotometer (Shimadzu UV-1700) at 
the optimum wavelength of 243 nm. The equilibrium uptake of ACP, qe (mg/g) was given by Eq [1]: 

 

 

 
where C0 (mg/L) and Ce (mg/L) are the initial and equilibrium concentrations of ACP, respectively, V (L) is the 
volume of solution, and m (g) is the mass of carbon adsorbent. 
 
 

[1] 
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3 RESULTS AND DISCUSSION  
 
3.1  Physical and chemical characterizations 

Table 2 provides a summary of the ultimate and proximate analysis of the initial raw precursor, PP. The 
selected precursor showed a relatively high volatile matter and fixed carbon content, but with a lower ash 
content, demonstrating the high suitability for the preparation of high quality activated carbon (Das et al., 
2015). The economic feasibility of different raw precursors, oak and birch (Klijanienko et al., 2008), sisal waste 
(Mestre et al., 2011), and hemp stem (Lupul et al., 2015) with a comparative elemental content have been 
reported by previous researchers. 

 
Table 2. Elemental and proximate analysis of PP. 

Elemental analysis (wt%) 

Carbon 46.7 
Oxygen 47.2 
Hydrogen 5.5 
Nitrogen 0.5 
Sulphur 0.2 
Proximate analysis (wt%) 
Moisture 1.7 
Volatile matter 71.9 
Fixed carbon 21.2 
Ash 5.2 

 
Nitrogen adsorption isotherm is a standard procedure for the determination of porosity of the 

carbonaceous adsorbents. From Figure 1, it can be deduced that these PP derived carbon adsorbents belong 
to the type I isotherm according to the International Union of Pure and Applied Chemistry (IUPAC) 
classification, with a significant increase of N2 adsorption at low relative pressures, and a long plateau 
extended to P/P0 ≈ 1. The results revealed that these carbonaceous adsorbents are essentially microporous, 
and the small adsorption-desorption hysteresis illustrated the presence of mesoporous structure (Klijanienko 
et al., 2008). Interestingly, the adsorption isotherm of PSAC displays a higher slope, indicating a wider 
distribution of microporous texture.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Nitrogen adsorption-desorption curves of PAC and PSAC. 
 

Similarly, the surface physical properties were substantially affected by the activating conditions. The 
BET surface areas, total pore volumes, and average pore diameters of PAC and PSAC were identified to be 
1354 m2/g, 0.705 cm3/g and 20.82 Å; and 1819 m2/g, 1.040 cm3/g, and 22.86 Å, respectively. It is evident that 
phosphoric acid may induce significant chemical alteration at low temperatures in the initial raw precursor to 
promote the pyrolytic decomposition of PP, with the formation of cross-linked structure. This cross-linking 
structure is governed by the bond cleavage reactions between the acid and organic materials in the raw 
precursor, leading to the formation of phosphate linkages between the fragments in the biopolymer. 
Conversely, steam pyrolysis showed an extra ability to penetrate into the porous surface to facilitate the 
distillation, desorption and efficient removal of volatiles, resulting in the significant improvement of the BET 
surface area and total pore volume (Budinova et al., 2006). This finding could also be explained by the 
excessive presence of activating agent, leading to the collapse of the extended weak structure, as a result of 
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the enhanced elimination of phosphate compounds during the phosphoric acid induced activation, which did 
not occur under the steam flow. Therefore, a greater BET surface area and higher total pore volume were 
obtained during the phosphoric acid assisted activation under steam flow (Lupul et al., 2015). 

 
Table 3. Surface textural properties of the PP derived activated carbons. 

Properties PSAC PAC 
BET surface area (m2/g) 1819 1354 
Micropore volume (cm3/g) 0.983 0.684 
Mesopore volume (cm3/g) 0.057 0.021 
Total pore volume (cm3/g) 1.040 0.705 
Average pore diameter (Å) 22.86 20.82 

 
Table 4 exhibits a comparison of the BET surface area and total pore volume of a wide range of activated 

carbons derived from different precursors. The activated carbons prepared in this work showed relatively high 
BET surface areas and total pore volumes as compared to some previous works reported in the literature. 

 
Table 4. Comparison of textural properties of different agricultural biomass derived activated carbons. 

Precursor Activated agent 
BET surface area 

(m²/g) 

Total pore 
volume 
(cm3/g) 

References 

Pomegranate peels 
H3PO4/Steam 1819 1.040 

Present study 
    H3PO4 1354 0.684 

Pomegranate peels  KOH 941 0.470 Azmier et al. (2014) 
Pomegranate 
seeds 

ZnCl2 988 0.568 Uçar et al. (2009) 

Date stone KOH 856 0.468 Foo and Hameed (2011a) 
Oil palm fiber      KOH 708 0.380 Foo and Hameed (2011b) 
Woody biomass birch H3PO4/Steam 1290 0.939 Budinova et al. (2006) 
Grap seeds H3PO4 1139 0.730 Al Bahri et al. (2012) 
Green Coconut 
Shell 

ZnCl2 996 0.449 Das et al. (2015) 

Sisal waste H3PO4 1008 0.450 Dizbay-Onat et al. (2017) 
Tea waste H3PO4 880 0.680 Kan et al. (2017) 

 
The FTIR spectra of the PP derived activated carbons are depicted in Table 5. The broad band at 3391–

3368 cm−1 is the primarily characteristic of the hydrogen bond (–O–H) in carboxyl, phenols, alcohols, and the 
absorbed water molecules (Nahil and Williams, 2012). The sharp peak at 2917 cm−1 is attributed to the 
symmetric or asymmetric stretching in aliphatic –C–H. The signal at 1703 cm−1 is assigned to the C=O 
vibration in ketones, aldehydes, lactones and carboxylic groups. This peak disappearance in PSAC suggested 
the excessive presence of carboxylic group did not take place during the phosphoric acid/steam assisted 
activation (Budinova et al., 2006). The intensity at 1599/1598 cm−1 is related to large condensed aromatic 
skeletons in the carbonaceous system. The weak signal at 1384 cm-1 may be due to the C-C vibration of 
aromatic ring. The small shoulder peak at 1248/1216 cm−1 is corresponded to C–O stretching of C–O–P in 
acids, alcohols, phenols, ethers and esters, while the presence of P–O–P derivatives showed the 
transmittance at 1051/1044 cm−1. At the low wavenumber district, the broad band at 565 /544 cm-1 indicates 
the out-of-plane deformation mode of the C-H vibration in aromatic rings (Zhu et al., 2016; Tounsadi et al., 
2016). 
 

Table 5. FTIR analysis of PAC and PSAC. 

No. 
Wavenumber (cm-1) 

Assignment 
PAC PSAC 

1 3391 3368 –O–H 
2 2917 2917 C–H 
3 1703 - C=O 
4 1384 1384 C-C 
5 1248 1216 C-O 
6 1044 1051 P-O-P 
7 565 544 C-H 
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3.2 Adsorption equilibrium study 

 Figure 4 displays the curve adsorption equilibrium, qe versus equilibrium concentration of ACP, Ce onto 
the PP derived activated carbons. Initial concentration exerted an important driving force for alleviating the 
mass transfer resistance between the liquid phase and the carbon adsorbents. By increasing the initial 
concentration from 10 to 200 mg/L, an increasing qe from 19.15 to 75.10 mg/g, and from 16.31 to 122.70 
mg/g, for PAC and PSAC, respectively, were shown.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Adsorption equilibrium, qe versus equilibrium concentration of ACP, Ce onto PAC and PSAC. 
 

Adsorption isotherm is an essential data source for the practical design and fundamental understanding 
of the carbonaceous adsorbents. Typically, the mathematical correlation is accessed by linear regression 
analysis. Due to the inherent bias resulting from linearization, alternative isotherm parameter sets were 
determined by non-linear regression (Foo and Hameed, 2010). In this study, three isotherm models: 
Langmuir, Freundlich and Temkin equations were established. Langmuir isotherm model (Langmuir, 1916) 
assumes monolayer adsorption with adsorption occur only at a finite number of definite localized sites, which 
are identical and equivalent. The Langmuir isotherm model is defined as: 

 

                                        0 L e
e

L e

=
1+

Q K C
q

K C
                                                    [2] 

 
where Q0 (mg/g) and KL (L/mg) are the Langmuir isotherm constants related to the adsorption capacity and 
energy of adsorption, respectively. The Freundlich isotherm model (Freundlich, 1906) is an empirical equation 
describing the non-ideal and reversible adsorption, with non-uniform distribution of heat adsorption and 
affinities over the heterogeneous surface, and is given by:  
 

                                                                   1/n
e F e=q K C                                                      [3] 

 
where KF (mg/g)/(L/mg)1/n and 1/n are Freundlich parameters related to the adsorption capacity and 
adsorption intensity, respectively. The Temkin isotherm model (Tempkin an Pyzhev, 1940) elucidates the 
indirect interactions between the adsorbate molecules based on the assumption that the heat of adsorption of 
all molecules in the layer would decrease linearly rather than logarithmically with surface coverage. It has the 
predictive power over a wide range of concentrations, and is commonly expressed as:  

  
                                        e e= ln( )q B AC                                                          [4] 

 
where B=RT/b and b (J/mole) is Temkin isotherm constant related to the heat of adsorption, A (L/g) is the 
equilibrium binding constant, R (8.314 J/mole.K) is the universal gas constant, and T(K) is the absolute 
temperature. 
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The applicability of the isotherm models was determined by judging the correlation coefficients, R2 value 
derived as:  
 

2
e,exp e,calc2

2 2
e,exp e,calc e,exp e,calc

( - )
R =

( - ) + ( - )
q q

q q q q
                                                   [5] 

 
The validity of the models was further verified by the root-mean-square deviation (RMSD), the commonly used 
statistical tool to measure the predictive power of a model and is derived as:  

  
n

2
exp p

i=1

( - )

=
n -1

 q q

RMSD                                                                            [6] 

 
where qexp (mg/g) and qp (mg/g) are the experimental and theoretical adsorption capacity, respectively. 
 

The detailed parameters obtained from these isotherm models are tabulated in Table 6. The 
experimental analysis showed strong positive evidence that the adsorption of ACP onto PAC and PSAC was 
best fitted to the Langmuir isotherm model, with the highest R2 of 0.994 and 0.996, and the lowest RMSD of 
0.579 and 0.690, respectively. This implied that the adsorption of ACP onto these newly prepared activated 
carbons from the aqueous solutions proceeds by a monolayer formation. The findings also suggested that the 
adsorption takes place on the homogeneous sites that are identical and energetically equivalent (Foo and 
Hameed, 2012b). The present results are in agreement with the previous researches for the adsorption of 
ACP onto sludge (Llado et al., 2015) and dende coconut (Ferreira et al., 2015) derived activated carbons.  
 
Table 6. Langmuir, Freundlich and Tempkin isotherm model parameters for the adsorption of ACP onto PAC. 

and PSAC. 

Adsorben
t 

Langmuir  Freundlich  Temkin  

KL  
(L/mg) 

Q0 
(mg/g) 

R² RMSD 
KF 

(mg/g)/(L/mg)1

/n 
n 

 
R
² 

  
RMSD 

A  
(L/g) 

B 
(J/mole

) 
R² 

RMS
D 

PAC 0.0395 85.49 0.994 0.579 15.58 3.325 0.933 1.698 16.54 0.514 0.987 1.741 
PSAC 0.0175 189.61 0.996 0.690    6.19 1.466 0.976 1.442 34.81 0.231 0.973 1.517 

 
Table 7 lists a comparison of the monolayer adsorption capacity of ACP onto activated carbons derived 

from different precursors. It can be concluded that the monolayer adsorption capacities of ACP onto the PP 
derived activated carbons obtained in this work were comparable with the previous researches. The present 
findings demonstrated the potential of pomegranate peel as a valuable precursor for preparation of high 
quality activated carbons via phosphoric acid and phosphoric acid/steam assisted activation for environmental 
applications.  

 
Table 7. A comparative evaluation of monolayer adsorption capacities of ACP onto activated carbons derived 

from different precursors. 

Precursor Activating agent 
Adsorption capacity 

(mg.g-1) 
References 

Pomegranate peels 
H3PO4 85.49 

This study 
H3PO4/Steam 189.61 

sisal waste K2CO3 124 Mestre et al. (2011) 
Dende coconut mesocarp - 90 Ferreira et al. (2015) 
Sludge Steam 53 Lladoa et al. (2015) 
Commercial activated carbon - 130 Saucier et al. (2017) 

 
4 CONCLUSIONS 

The present research revealed the great technical and economic feasibility of pomegranate peels as 
renewable resources for preparation of activated carbon by a single step, phosphoric acid or phosphoric 
acid/steam assisted activation. These newly prepared carbonaceous adsorbents showed the high BET 
surface areas and total pore volumes of 1354 m2/g and 0.705 cm3/g; and 1819 m2/g and 1.040 cm3/g 
respectively. The novel application for the innovative treatment of acetaminophen has been attempted. The 
equilibrium data were best fitted to the Langmuir isotherm model, with the monolayer adsorption capacities of 
85.49 mg/g and 189.61 mg/g, respectively.  
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ABSTRACT  
  
As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater 
resources is key for sustainable development and integrated water resource management (IWRM). 
Methodologies supporting IWRM implementation have largely focused on the overall process, paying limited 
attention to evaluation methods of ecologic, economic, and social conditions. To assist in assessing water 
resource sustainability, the Integrated Hydro-Environment Assessment with Latitude (IHEAL) has been 
developed. IHEAL merges the driver-pressure-state-impact-response (DPSIR) framework used by the United 
Nations Global Environment Outlook, the ecosystem services and human wellbeing framework used by the 
Millennium Ecosystem Assessment, and sustainability criteria for water resource systems to better understand 
spatiotemporal interactions between hydrologic, socio-economic, and ecologic systems and evaluate impacts 
of disturbances on ecological goods and services (EGS) and human well-being. IHEAL comprises a 
Conceptual Template (IHEAL-CT), for assessing basin conditions and guiding indicator selection, and an 
Assessment Interface (IHEAL-AI) for organizing, processing, and assessing analytical results. IHEAL-CT 
connects water use directly, or through EGS, to constituents of human well-being. Disturbance Templates for 
eight pressure types (e.g. land use change, climate change, population growth) are provided to guide users 
regarding potential changes to landscape elements in the hydrological cycle, impacts to EGS, and societal 
implications to human well-being. IHEAL-AI organizes the output data from hydrologic, ecologic, economic, 
and social analyses with respect to time and space, computing the reliability, resilience, and vulnerability of 
the sustainability indicators for various water use scenarios. Results are presented as a time series of 
sustainability indicators and a star plot for comparison of management alternatives. IHEAL-CT was applied to 
the Lemhi River Basin, Idaho. IHEAL supports the IWRM process by providing a structured means to frame 
and analyze water related issues and select appropriate indicators to assess the contribution of water 
programs and policies to sustainable development in river basins. 

 
Keywords: Integrated water resources management; conceptual model; sustainability indicators; ecosystem goods 

and services. 
 
 

1 INTRODUCTION  
The sustainable management of water resources is critical to the long-term viability of the ecologic, 

economic, and social systems in a basin on which people rely (GWP, 2004). Efforts to promote sustainable 
and responsible use of water have given rise to integrated water resource management (IWRM) (GWP, 2004; 
GWP, 2008). IWRM involves understanding the current hydrologic conditions and water resource issues, 
identifying and assessing limiting factors, developing and implementing solutions, and monitoring for success. 
Supporting the implementation of IWRM is a broad base of literature covering general concepts, philosophies, 
methodologies, guidance, and applications. The IWRM methodology and guidance literature has largely 
focused on the overall process: creating participatory organizations, building institutional capacity, financing 
programs, developing legal frameworks, outlining components of a plan, and identifying management 
instruments (GWP, 2004; 2008; UNESCO, 2009a; 2009b). While a significant aspect of IWRM is participatory 
and management oriented, analytical tools can assist water managers and participants in assessing the 
current situation as well as developing solutions to address and mitigate identified limitations. 

 Water management has traditionally focused on the distribution of water given the available supply and 
demand of water within a basin (ASCE, 1998). Yet, by IWRM principles, assessment of water management 
decisions needs to also evaluate how water distribution affects the sustainability of the ecological, economic, 
and social systems within a basin (GWP, 2004; 2008). By ‘sustainability’ or ‘sustainable development’ we are 
referring to the definition provided by the Brundtland Commission as ‘development that meets the needs of the 
present without compromising the ability of future generations to meet their needs (WCED, 1987) and as 
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implemented through the 2030 Agenda for Sustainable Development (UN, 2015). To date, the information 
necessary to make effective management decisions with respect to the sustainability of ecological, economic, 
and social systems has been limited by its complexity and fragmentation. In addition, the general lack of 
knowledge regarding the holistic assessment of sustainable water resources can result in less than optimal 
management strategies. Absent are the methodologies and frameworks necessary to make effective, efficient, 
and timely decisions and support the IWRM process. To assist in illuminating the connectivity between the 
drivers/pressures of change and the impact on the ecological, economic, and social systems, the Integrated 
Hydro-Environment Assessment with Latitude (IHEAL) was developed (Borden, 2014). IHEAL supports the 
IWRM process by providing a structured and transparent means to understand how water related issues 
influence these systems, guiding the selection of discipline specific analytical techniques, and assessing the 
sustainability of the systems’ analytical results. IHEAL is intended to address two audiences: 1) non-scientific 
participants (decision makers, water user associations, non-technical stakeholders; and 2) technical 
participants (scientist and engineers). Note, this document provides a high-level overview of IHEAL. A more 
complete description of the fundamental logic, methodology, and case study description can be found in 
Borden (2014).  
  
2 INTEGRATED HYDRO-ENVIRONMENT ASSESSMENT TOOL WITH LATITUDE (IHEAL)  

IHEAL has been developed to evaluate the sustainability of water resources in river basins with respect 
to current and future ecologic, economic, and social systems conditions. IHEAL’s analytical and process 
framework provides a systematic foundation for understanding changes in sustainability due to natural and/or 
anthropogenic disturbances altering the hydrologic system. IHEAL is the marriage of three analytical 
foundations: i) the DPSIR framework used by the UN’s Global Environment Outlook (UNEP, 2007; Pintér et 
al., 2008) to help users identify cause-effect relationships; ii) the Millennium Ecosystem Assessment 
framework (MA, 2003) for describing linkages between changes in the state of water resources and ecological 
systems, the services they provide, and links to human well-being; and iii) the water resource systems 
sustainability criteria which encompass aspects of resilience, reliability, and vulnerability as defined by the 
American Society for Civil Engineers (ASCE, 1998). Additionally, IHEAL is organized to help facilitate multi-
stakeholder dialogue and partnerships among policy-makers, analysts, and interested stakeholders; an 
important principle set forth in the 2030 Agenda for Sustainable Development (UN, 2015). Together these 
frameworks provide users a straightforward method for identifying the drivers of change, the associated 
change in the state, and the impacts on the hydrologic systems which influences the delivery of ecological 
goods and services (EGS) and affect human well-being. The framework is intended to support analysis by 
experts as well as in facilitated participatory settings for planning and adaptation within a basin; bridging the 
perspectives of the analyst with the needs of the policy-maker and interested stakeholders.  

 For incorporating the IHEAL analysis into IWRM, Giupponi et al. (2006) identified five steps: problem 
framing, indicators and measures, conceptual frameworks, analysis, and assessment (Figure 1). IHEAL 
supports this process using the Conceptual Template (IHEAL-CT) to frame water resources issues with 
respect to sustainability and identify relevant indicators, and using the Assessment Interface (IHEAL-AI) to 
organize, process, and assess results from the hydrologic, ecologic, economic, and social systems analyses. 
More specifically, IHEAL-CT is a screening tool for identifying the relevant uses of water throughout a basin 
and how these uses influence sustainability. In IHEAL, water use includes both direct and indirect usage 
through EGS provided by hydrologic landscape elements (e.g. rivers, groundwater, wetlands). Within the 
IHEAL-CT, water use is represented as provisioning EGS (direct consumption, production, navigation, food, 
fiber,), regulating EGS (water regulation, erosion control, water purification, storm protection), and cultural 
EGS (spiritual, educational, aesthetic, social relations, cultural, recreation/ecotourism). Once baseline 
conditions have been screened, Disturbance Templates qualitatively predict how disruptions to the hydrologic 
system impacts hydrologic landscape elements, direct and indirect water use, and human well-being. This 
screening provides users with a holistic overview of water use and potential impacts to sustainability in a basin 
given current condition and future scenarios. Finally, based on water use and predicted impacts, relevant 
indicators are identified which can help establish monitoring systems and select analytical methods for the 
hydrologic, ecological, economic, and social systems.  

IHEAL-AI quantitatively assesses the ecological, economic, and social systems related to the current 
water resources conditions in a river basin (including the magnitude of water resources issues) and tests 
potential scenarios with respect to the ASCE’s Sustainability Criteria for resilience, reliability, and vulnerability, 
and the results are expressed as Sustainability Indicators (refer to Section 2.2).  
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Figure 1. Steps to incorporate analytics into IWRM (modified from Giupponi et al., 2006). The grey boxes 

represent the steps that IHEAL supports. 
 
2.1 IHEAL-CT process and outcomes 

The general procedure for applying IHEAL-CT involves delineating the basin into sections, developing 
baseline conditions of water use for each section, creating scenarios that depict impacts from drivers and 
pressures, and post-processing the analysis to cull irrelevant information and consolidate important factors. 
The specific process, as depicted in Figure 2, involves: 

A. Basin Delineation into sections representing distinct hydrologic landscape elements (e.g. lakes, river 
reaches, wetlands) and where the significant disturbances to the hydrologic regime are likely to 
occur (e.g. introduction of a reservoir, increased withdrawals from a river to accommodate greater 
irrigation requirements). 

B. Screen Sections to identify water uses and associated constituents of human well-being for each 
hydrologic landscape element. IHEAL-CT includes a matrix to guide this process. Within each 
section, users select from 8 possible hydrologic landscape elements, each with up to 24 EGS, as 
outlined in the MA (2003), and their relevant constituents of human well-being. Providing guidance to 
the user, the matrix limits selection to only EGS and constituents of human well-being relevant to a 
landscape element being considered. Once users select relevant hydrologic landscape elements, 
EGS, and constituents of human well-being, the unselected options are hidden thus highlighting only 
relevant water use in the basin. The results are 1) outline of the hydrologic landscape elements per 
section throughout the basin and 2) a baseline understanding of where and how water is used and 
its influence on human well-being. 

C. Apply Disturbance Templates to the baseline results to predict changes associated with drivers and 
pressures acting on the hydrologic system. Disturbance Templates have been developed to 
represent changes in supply, demand, land use, and climate as well as the introduction of water 
infrastructure or a change in its operation. Given the disturbance type, these templates predict 
alteration in the basin hydrology, impacts to hydrologic landscape elements, and delivery of EGS. 
The Disturbance Templates are applied to the hydrologic landscape elements and they include two 
types: active and altered disturbance. Active disturbances represent landscape elements where the 
pressure is being directly applied and altered disturbances represent landscape elements that are 
being impacted, but are spatially removed from the pressure. For example, a river reach 
experiencing increased withdrawals to satisfy population growth is classified as “active”. If the water 
satisfying the population growth is supplied by an upstream reservoir. New operations in the 
reservoir and flow in the intervening river system would alter hydrologic regime in these landscape 
elements and thus be classified as “altered”. When several different disturbances are evaluated, 
relevant Disturbance Templates are applied to each disturbance separately as a “Scenario” and the 
results are aggregated in the Reporting Score Card. 

 

 
Figure 2. Processing steps in the IHEAL-CT. 

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print) 4907



  
          

  

 

Once these steps are completed, IHEAL-CT generates: 
D1 Reporting Score Card that identifies active and altered landscape elements and, in each landscape 

element throughout the basin, qualitatively predicts trends in water use (EGS) as well as 
constituents of human well-being. Multiple scenarios can be plotted to show the impacts from 
multiple disturbances.  

D2 Indicator List of relevant hydrologic, ecologic, economic, and social indicators to guide monitoring 
programs and selection of analytical methods supporting the sustainability assessment in IHEAL-AI. 
Indicators are drawn from over 550 water related indicators from 11 water resource indexes and are 
linked to the UN Sustainability Development Goals. 

IHEAL-CT has been developed in MS EXCEL and contains macros to consolidate the information into 
the Reporting Score Card and generate the Indicator List. The summary output can be translated into 
conceptual models of the river basin that clearly delineates connections between the physical landscape 
features, the stressors and factors important to the environment and communities. These conceptual models 
are developed in collaboration with stakeholders and can be used to prioritize quantitative models and studies. 
 
2.2 IHEAL-AI process and outcomes 

Using hydrologic, social, economic, and ecological analytical results, IHEAL-AI quantitatively assesses 
the sustainability of current and proposed water resources conditions in a river basin. The process by which 
IHEAL-AI performs the assessment involves converting analytical output to sustainability indicators, 
aggregating these indicators using a decision tree, and reporting the results. The specific process, as depicted 
in Figure 3, involves:  

E Hydrologic, Ecologic, Economic, and Social Systems’ Analyses. Using discipline specific methods, 
analytical results of the current water resources conditions in a river basin (including the magnitude 
of the problem) and tests potential scenarios. This step is outside of the IHEAL-AI framework, but 
the results inform the IHEAL-AI interface.  

F Sustainability Indicators (SI) are computed from the hydrologic, ecologic, economic, and social 
systems’ analytical results. SIs are a function of a system’s resilience, reliability, and vulnerability of 
an indicator (ASCE 1998). Resilience is a measure of a system’s ability to withstand and recover 
from changes from drivers or pressures. Reliability is defined as the probability that an indicator is 
within an acceptable range during the time period considered. Vulnerability is the extent to which 
change from a driver or pressure may damage or harm a system and reflects on a system’s 
sensitivity to perturbations and ability to adapt to new conditions. In other words, a system’s 
vulnerability is the evidence of the buffering capacity to adjust to perturbations or susceptibility to 
tipping points or thresholds of harmful change. In general, with greater reliability and resilience and 
lower vulnerability, a system becomes increasingly sustainable. The computations for these terms 
are presented in ASCE (1998).  

  Additionally, show-stopper (SS) flags highlight when systems are critically limited by a 
parameter or condition based on expert knowledge in a discipline. For example, 40oC is lethal for 
many fish species, irrespective of how suitable the water depth or velocity conditions are in the river 
system. If water depth, velocity, and temperature are combined to evaluate fish habitat quality in a 
river reach, the fish habitat SI may appear acceptable because water depth and velocity are 
favorable despite the water temperature making the reach inhospitable. In this situation, fish habitat 
would be tagged with a SS flag to identify the limitation.  

  Much like the sections and hydrological landscape elements identified by the IHEAL-CT, the SI 
and SS flags are calculated at user-defined locations throughout the basin. The types and spatio-
temporal distribution of SI and SS flags are a function of the ecological, economic, and social 
systems’ analyses. The Sustainability Indicator Module in IHEAL-AI contains algorithms for 
computing the SI and identifying SS flags. 

 

Figure 3. Processing steps in the IHEAL-AI. 
  

G Decision Trees aggregate disparate and spatially distinct SIs into the Hydrologic, Ecologic, 
Economic, and Social Sustainability Indexes used to evaluate water resource sustainability. IHEAL-
AI decision trees are defined in 4 levels that start with local characteristics (termed Indicators) and 
are up-scaled at several levels to represent the entire basin. The Indicator Level combines a single 
or several SIs from output data to form a local SI that represents a zone, site, or reach. For example, 

E. Hydrologic 
Analysis F. Sustainability 
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Trees 
H. Reporting 

Interface 
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SI values of stream velocity, water depth, and temperature are combined to compute SI values of 
spawning, rearing, migration, and adult habitats for salmon. The Component Level combines the 
Indicator SIs into a single value representing zones, sites, or reaches. For example, the Component 
Level combines the Indictor SI values of spawning, rearing, migration, and adult salmon habitats to a 
single SI representing general habitat quality for the reach. The Theme Level aggregates spatially 
distinct Component SI values from zones, sites, or reaches into a single SI value for the basin. In our 
example, the Component Level SI values for salmon habitat from all the reaches would be combined 
to represent the salmon habitat quality throughout the river system. Finally, the Index Level 
combines the Theme SI values of different basin-wide Themes. In this example, the Theme SI for 
salmon habitat quality and the Theme SI for another aquatic species such as bull trout are 
aggregated into the Ecological Sustainability Index value representing all the species of concern in 
the basin. 

  The Decision Tree is also applied to the SS flags, but only at the Theme Level where spatially 
disparate sites or zones are aggregated. At the Theme Level, the number of sites or zones that have 
a “Fail” status are compared against an “acceptable” criteria to determine if the system as a whole is 
impaired. For example, if 20% of the reaches in a basin have SS flags and impairments is 
considered 30% of reaches having SS flags, the SS flag assessment for that system would be 
“Pass”. The SS flag designation in the Theme Layer is carried through to the Index Level. A user is 
able to disaggregate these SS or indices to discern the spatial coverage. 

H Reporting Interface displays the resulting Hydrologic, Ecologic, Economic, and Social Sustainability 
Indexes as well as the SS flags. For the overall comparison between scenarios, the Reporting 
Interface uses a star plot of the Index values and a table of SS flags (Figure 6). To review the 
impacts of water availability, an annual time series of the Hydrologic, Ecologic, Economic, and 
Social Sustainability Indexes and percentage normal precipitation are plotted for each scenario. 
Below that is a corresponding table of annual SS flags for the ecological, economic, and social 
systems. 

 
3 ASSESSING WATER RESOURCE SUSTAINAIBITY IN THE LEMHI RIVER BASIN 

IHEAL was applied to the Lemhi River Basin (LRB), a rural basin in northeast Idaho, USA, to assess the 
water resources sustainability associated with a change in irrigation practices. The following provides a brief 
description of the application with a full description by Borden (2014). 
 
3.1 Lemhi River Basin background 

The basin covers 3,149 km2 and is flanked by the Bitterroot Range and Beaverhead Mountains to the 
east and the Lemhi Range to the west. Elevations range from an average of 1,585 m and 2,745 m amsl along 
the valley floor to the ridges, respectively. The Lemhi River flows 97 km to the northwest where, at the 
confluence, the minimum, average, and maximum daily average discharge of the Lemhi River is 0.02 m3/s, 
7.11 m3/s, and 73.91 m3/s, respectively. The LRB has cold, wet winters and warm, dry summers. Annual 
precipitation ranges from 230 mm on the valley floor to 1016 mm in the mountains, with 70% falling during the 
winter months (November – April).  

Stream flow is important for agricultural irrigation and the fishery. Economically, the LRB community is 
heavily tied to the land. Cattle ranchers, the primary economic sector, have traditionally flood irrigated alfalfa 
hay crops and pastures to support cattle production, requiring large quantities of water to be diverted from the 
river system. Irrigation waters are largely taken from surface water sources, thus dewatering the stream 
network. Though instream flow is decreased when applying flood irrigation early in the irrigation season, a 
portion of the diverted water recharges the shallow groundwater system, enhancing baseflow later in the 
summer. Ecologically, the basin’s river system maintains resident and migratory fish populations by providing 
spawning and rearing habitat for anadromous steelhead and Chinook salmon, as well as habitat for the 
resident bull trout. Reducing stream flows stresses the aquatic ecosystems by fragmenting habitat, creating 
fish migration barriers and inducing warmer water temperatures. Steelhead, Chinook salmon, and bull trout 
are listed as endangered species under the U.S. Endangered Species Act.  

The competing demands between agricultural irrigation requirements and adequate stream flow to 
support fish habitat creates a contentious setting for water use in the LRB. To ease the competition for water, 
conversion from flood irrigation to more efficient sprinkler irrigation is being promoted to leave more flow in the 
river system. Due to its efficiency, sprinkler irrigation reduces recharge to the shallow aquifer system, reducing 
baseflow in the river later in the summer. Thus, questions arise as to the water resource sustainability 
associated with the conversion to sprinkler in the basin. Will the reduction in flood irrigation diminish shallow 
groundwater and reduce instream flows later in the season? Will the increase in the sprinkler use benefit or 
impair the ranching economy? How will this conversion impact the aquatic habitats supporting the steelhead, 
Chinook salmon, and bull trout populations and what will be the effect on the recovery of the species? What 
are the social impacts of converting to sprinklers? IHEAL was applied to the LRB to demonstrate its 
applicability in framing and analyzing these questions (Borden, 2014). 
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Figure 4. Sectional delineation of the LRB. Flow in the basin is from southeast to northwest (Borden, 2014). 

 
3.2 Water resource use screening of the LRB 

Four scenarios and the baseline conditions (B) were evaluated using IHEAL-CT: S1 - change in irrigation 
in Section 2 with short-term minimum conversion, S2 - change in irrigation in Section 2 with long-term 
significant conversion, and S3 – construction of the proposed Hayden Creek Reservoir in Section 4. For 
Scenarios 1-2, less water is required for sprinkler irrigation resulting in decreased diversion rates, more water 
in the Lemhi River, and a less disturbed flow regime. This more natural flow regime has higher peak stream 
flows and a more varied hydrograph that is responsive to snowmelt throughout the river system. However, the 
conversion may decrease the late season stream flows as the shallow groundwater is not supplemented by 
flood irrigation infiltration during the spring and early summer resulting in less water for both fish and ranchers 
later in the summer. This hydrologic trend will become more pronounced as conversion to sprinkler irrigation 
increases from S1 to S2.  

 Construction of the Hayden Creek Reservoir (Scenario 3) will inundate part of the existing river system 
and floodplain habitats to create a lake/reservoir habitat. Reservoir storage and releases will decrease peak 
flows and augment lower flows thus reducing flow variability in the lower basin Section 5. Water temperatures 
will lower in Section 5 as the reservoir is designed for bottom release. However, if the cold-water pool is 
exhausted in dry years, it is possible that released water temperature could return or be elevated above pre-
reservoir conditions. Reservoir releases will be required to maintain sufficient flows at the L-6 diversion to 
ensure it does not become a migration barrier. Hydrologically, the reservoir will have no impact on Sections 1-
3.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Mapping of hydrologic landscape element per basin sections for baseline conditions and 3 
scenarios in the LRB case study (Borden, 2014). 

 
For the screening, the LRB was delineated into five sections based on hydrologic characteristics and 

management alternatives (Figure 4). The freshwater habitats (Figure 5 Baseline), primary EGS and 
associated constituents of human well-being for each habitat (Table 1 “B”) were identified within each section. 
Note that although Lake/Reservoir habitat is not currently present in the LRB, it has been included in the 
Baseline analysis as it was introduced in the S3 scenario. Based on the change in irrigation diversions in S1 
and S2, Section 2 will be directly impacted and Sections 3 and 5 will be indirectly impacted due to a change in 
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downstream flow (Figure 5). For the S3 scenarios, introduction of the reservoir will have direct impact in 
Section 4 and indirectly impact Section 5. This analysis provides users with a rapid overview of potential 
impacts throughout the basin given the location of the disturbance. 

Applying the IHEAL-CT screening matrix, the Baseline freshwater habitats are mountain snowpack, 
riverine, floodplain, and wetland. EGS provided by these include provisioning (irrigation water), regulating 
(flood protection, water supply), and cultural (aesthetics, cultural) (Table 1). The associated constituents of 
human well-being include security (resilience to ecological stresses, access to EGS), basic needs (access to 
the resource for making a living), health (adequate food and nutrition), and good social relations (realization of 
aesthetic and recreational values). For Scenarios S1 and S2, the provisioning services of freshwater 
production in Section 2 will likely increase throughout most of the irrigation season with the exception of the 
late summer, when stream flow may drop below current levels (Table 1). Therefore, the provisioning services 
of freshwater production in Sections 3 and 5 will also drop for late summer. The increased high water lessens 
the chance of migration barriers being created in Section 5 and connections of tributaries to the mainstem in 
Section 2 during the early spring before snowmelt (an important time for steelhead migration). However, late 
summer low flow conditions may degrade valuable rearing habitat in the lower reaches of Section 2 and 3, 
thus impacting the supporting services associated with habitat and cultural opportunities associated with 
recreational fishing. Wetlands, partially recharged by subsurface irrigation return flow, will likely decrease in 
function with the increased use of sprinklers. Human well-being associated with the increased access to 
resources for a viable livelihood will go up in Section 2, but may have adverse effect on irrigators in Sections 3 
and 5 later in the season. 
 
Table 1. Examples of the EGS and constituents of human well-being trends in Sections 3 and 5 resulting from 

the IHEAL-CT screening of the LRB. “B” is Baseline and “S1”, “S2”, and “S3” are Scenarios 1, 2, and 3, 
respectively. 

   EGS Trend* Impacted 
Zones 

Human Well-Being Trend* 
Habitat EGS B S

1 
S
2

S
3 

B S1 S2 S3 

Section 3: Riverine − ↕ ↕ − 5,X − ↘ ↘ − 
Provisioning Freshwater Production − ↘ ↘ − 5,X − ↘ ↘ − 

Cultural Aesthetic, Recreation − ↔ ↔ − X − ↔ ↔ − 
Supporting Natural Cycles*, Habitat & 

Biodiversity 
− ↕ ↕ − 5,X − ↔ ↔ − 

Floodplain  − ↕ ↕ − 5,X − ↗ ↑ − 
Provisioning Freshwater Production − ↗ ↗ − 5,X − ↗ ↑ − 
Regulating Water Regulation − ↘ ↘ − 5,X − ↔ ↔ − 
Cultural Recreation − ↔ ↔ − X − ↔ ↔ − 
Wetlands  − ↘ ↓ − 5,X − ↘ ↓ − 
Regulating Water Regulation, Storm 

Protection 
− ↘ ↓ − 5,X - ↘ ↓ - 

Cultural Recreation − ↘ ↓ − X - ↘ ↓ - 
Section 5: Riverine − ↕ ↕ ↑ X − ↔ ↔ ↑ 
Provisioning Freshwater Production − ↘ ↘ ↑ X − ↘ ↘ ↑ 

Cultural Aesthetic, Recreation − ↑ ↔ ↔ X − ↔ ↔ ↔
Supporting Natural Cycles*, Habitat & 

Biodiversity 
− ↕ ↕ ↑ 1,2,3,4,

X 
− ↔ ↔ ↑ 

Floodplain  − ↕ ↕ ↑ X − ↗ ↑ ↑ 
Provisioning Freshwater Production − ↗ ↗ ↑ X − ↗ ↑ ↑ 
Regulating Water Regulation − ↔ ↔ ↔ X − − − ↔
Cultural Recreation − ↔ ↔ ↑ X − ↔ ↔ ↑ 
  *    ↕ Positive and negative trends will occur, ↑ Definite positive 

trend, ↗ Weak positive trend, ↔ Either positive or negative trend 
could occur, ↘ Weak negative trend, ↓ Definite negative trend, − 
No change 

 
The EGS lost in Section 4 due to the Hayden Creek Reservoir includes the provisioning services of the 

floodplain and natural riverine habitat and the migration barrier created by the structure. Section 5 will likely 
see an increase in provisioning services associated with freshwater production due to the water regulation 
associated with the reservoir in Section 4. In terms of human well-being, recreational benefits increase in 
Section 4 and expected increased reliability of water supply enhances livelihood in Section 5. However, with 
the loss of the floodplains available for irrigation in Section 4, the local ranchers have lost access to resources 
for a viable livelihood. Factoring in the cost of reservoir construction, the benefits associated with the 
increased access to resources for a viable livelihood in Section 5 are likely insignificant and, in fact, cost more 
when looking at area inundated and EGS lost. 

 Based on the screening of freshwater habitats and the relevant EGS highlighted, a recommended 
indicator list was generated for the ecological, economic, and social systems (Table 2). Pressures indicators 
identified are change in water demand for agriculture (hydrologic system) and change in production (economic 
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system). State indicators for the hydrologic system center around water supplied to the irrigators (demand, 
supply, and deficit) and the ecological functions that are sustained by the flow regime in the river. For the 
proposed dam, state indicators also include water level and storage volume. Economic indicators include 
costs, and revenues of crop production and construction, operations, and maintenance costs for the proposed 
reservoir. Ecological state indicators are the bull trout and salmon aquatic habitat for the spawning, rearing, 
migration, and adult (bull trout only) life stages. Social state indicators include average annual income for the 
residents and the recreational use of the reservoir. Hydrologic impact indicators include total delivery, 
demand, deficit, and reliability of delivery and for S3, the reservoir average annual storage and likelihood of 
filling. For economics, the change in net revenue per acre for each irrigation method and section as well as 
the change in production were considered. Ecological impacts were measured by the change in habitat for 
both listed species and the social impact was the trend in household income and recreational access.  
 
Table 2. Indicator list from the IHEAL-CT screening of the LRB scenarios. Italicized parameters were used in 

the IHEAL-AI assessment. 
PSI Hydrologic System Ecologic System Economic System Social System 

Pressure  Change in water demand 
 Reservoir construction 

 None  Change from sprinkler to 
flood irrigation 

 None 

State  Water flow in river system 
 Irrigation demands 
 Water delivery 
 Water deficit 
 Area irrigated 
 Consumptive use 
 Reservoir storage 
 Reservoir water levels 

 Aquatic habitat quality for 
salmon: rearing, migration, 
spawning 
 Aquatic habitat quality for 
bull trout: rearing, 
migration, spawning 
 Minimum stream flow 
requirements 

 Production from irrigation 
 Cost of production 
 Revenue generated by crops 
 Land under irrigation 
 Crops grown 
 Recreational dollars 
 Reservoir construction costs 
 Reservoir O & M 

 Average household 
income 
 Days of recreational use 
of river system 
 Days of recreational use 
of reservoir 

 

Impact  Reliability of water supply 
 Average annual supply 

 Change in salmon aquatic 
habitat 
 Change in bull trout 
aquatic habitat 

 Trend in net revenues 
 Trend in land under 
production 

 Trend in household 
income 
 Recreational use of 
reservoir 

 
3.3 Water Resource Sustainability Assessment of the LRB 

A preliminary hydro-economic modeling study was conducted to determine the optimal distribution of 
flood and sprinkler irrigation to produce the maximum economic benefit (Borden, 2014). Unlike screening of 
S2 and S3, this analysis looked at impacts throughout the LRB. Hydrologic, ecologic, economic, and social 
systems analyses were conducted on the Baseline Scenario and Optimized Irrigation Scenario conditions. 
These analytical results were synthesized using IHEAL-AI with impact indicators (Table 2) and evaluation 
methods described in Table 3.  
  

Table 3. Summary of analytical methods used in LRB (Borden, 2014). 
SC 

Discipline 
Analytical Method Analytical 

Output 
Evaluated 

Processing Method 

Hydrologic Lemhi River Basin Model (LRBM): a water 
allocation model developed in MIKE BASIN 
(Borden, 2016) that accounts for daily catchment 
inflows; routing of water in the stream network; 
and diversion operation, consumption, and return 
flows for irrigation. Results include time series of 
any computational component (e.g. river flows, 
water delivery, and deficits for water users). The 
LRBM simulated flow on a daily time step over a 
13-year period. 

Reliability 
of water 
delivery 

The LRB was divided into 5 sections, similar 
to sections in IHEAL-CT (Figure 4). For 
each section, the daily water deficit for all 
nodes representing flood irrigation and all 
nodes sprinkler irrigation was computed.  

Ecologic The USGS conducted 12 PHABSIM sites 
throughout the LRB. For each site, a discharge-
weighted usable area (WUA) relationship was 
developed per species and life stage (Sutton & 
Morris, 2004, 2005, 2006) 

WUA for 
steelhead: 
 rearing 
habitat,  
 spawning 
habitat 

At each PHABSIM site, the daily discharge 
from the LRBM was applied to the 
discharge-WUA relationships from the 
PHABSIM studies. The result was a daily 
WUA for each PHABSIM site throughout the 
simulation period. 

Economic Cost-benefit analysis of hay and alfalfa 
production (Contor, 2008). Revenues linked to 
production based on water delivery through 
FAO33. Water delivery was taken from the LRBM 
output. Note, as the majority of the PHABSIM 
sites were in the upper basin, the results include 
this bias. 

Net 
revenue 

 
Reliability of 
water delivery 

The LRB was divided into 5 sections, similar 
to sections in IHEAL-CT (Figure 4). For 
each section, the daily water delivery for all 
nodes representing flood irrigation and all 
nodes sprinkler irrigation was computed. Per 
irrigation method per zone, calculated crop 
yield based on water delivery for each 
cutting. Based on crop yield, computed the 
economic production based on cost-benefit 
analysis. 

Social No correlation could be found between existing 
social indicators and discharge in the LRB.  

None None 
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 The analytical results and assessment using IHEAL-AI for the Baseline Scenario and Optimized Irrigation 
Scenario are presented in Reporting Interface (Figure 6). The Radar Plot (top graph in the Reporting 
Interface) indicates that increasing sprinkler use to optimize economic output in the LRB will result in an 
increase in the Hydrology and Economic SI Indexes by 0.11 and 0.10, respectively, and a decrease in the 
Ecologic Index by 0.21. SS flags are green for all systems in both scenarios indicating that overall the systems 
do not exhibit critical conditions in most years.  
 

 
Figure 6. IHEAL-AI Reporting Interface assessing the sustainability of water resources for the Baseline 

Scenario and Optimized Irrigation Scenario (Scenario 1). The simulation information (A), radar plot (B) and 
accompanying data table (C) provide the overall system performance of the Hydrologic, Ecologic, Economic, 
and Social Sustainability Indexes and SS flags (green denotes passing, red denotes failing). In the lower half, 

the Baseline and Scenario 1 time series provide the annual Hydrologic, Ecologic, Economic, and Social 
Sustainability Indexes (D,F) and SS flags (E,G). The percentage of average precipitation (denoted “WY”) (H) 

enables users to compare the SI Indexes and SS flags with respect to water availability. 
 
 The Reporting Interface also reports the annual values of the Hydrology, Ecologic, Economic, and Social 
SI indexes and SS flags as well as the percentage of annual precipitation in the LRB (time series in Figure 6). 
The SI indexes for all systems show improved conditions with greater annual precipitation. That said, the 
Hydrology and Ecological SI indexes are more sensitive to annual precipitation while the Economic SI index is 
relative stable. Comparing the scenarios, the Ecological SI index showed a marked decrease in the 
sustainability of quality habitat. The Hydrology SS flags dropped from 3 to 2 and Economic SS flags from 1 to 
0 reflecting fewer critical conditions in the reliability of water delivery and net revenue between the Baseline 
and Optimized Irrigation Scenarios. Conversely, Ecological SS flags increased from 3 to 5, which indicates 

IHEAL Reporting Interface 

A B 

C

E 

D

F 

G

H 

H 
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that the critical conditions in the sustainability of habitat will increase with increased sprinkler conversion. The 
results presented in the Reporting Interface allow those concerned with water management in the LRB to 
holistically assess the water resources sustainability given a change in irrigation practice. 
 
4 CONCLUSIONS 

The Integrated Hydro-Environment Assessment with Latitude enables a conceptual framework to be 
developed identifying critical components and linkages within a river basin that can be influenced by 
management decisions. This framework facilitates analytical assessments of water resource sustainability and 
policy alternatives in a structured, reliable, and transparent manner. IHEAL merges the DPSIR and ecosystem 
services/human well-being frameworks, and sustainability criteria for water resource systems to enable users 
to better understand spatiotemporal interactions between hydrologic, socio-economic, and ecologic systems. 
IHEAL supports the IWRM process by providing a structured means to frame and analyze water related 
issues and select appropriate indicators to assess the sustainability of water programs and policies in river 
basins. IHEAL- CT (Conceptual Template) is used for appraising the situation and guiding indicator selection 
and IHEAL-AI (Assessment Interface) for organizing and processing analytical results. The Lemhi River Basin 
application demonstrates how the framework can be used to setup and assess water resource issues in 
basins.  
 
REFERENCES 
ASCE (1998). Sustainability Criteria for Water Resource Systems. Task Committee on Sustainability Criteria, 

Water Resources Planning and Management Division, ASCE and the Working Group of UNESCO/IHP IV 
Project M-4.3, D.P. Loucks, (committee chairman), Reston, VA: American Society of Civil Engineers, 253.  

Borden, C. (2014). Flexible Framework for Assessing Water Resources Sustainability in River Basins, 
Dissertation for Center of Ecohydraulics Research. University of Idaho, Boise, Idaho, USA, 230. 

Borden, C. (2016). Lemhi River Basin Model Supporting Documentation, Centered Consulting International 
Report prepared for the State of Idaho Office of Species Conservation, 88. 

Brundtland Commission (1987). Our Common Future, Report of the World Commission on Environment and 
Development, 8. Oxford University Press: Oxford, New York. 

Contor, B. (2008). Demand-PriceEffects.xls. Spreadsheet, Idaho Water Resources Research Institute (USA), 
Idaho. 

Giupponi, C., Jakeman, A.J., Karssenberg, D. & Hare, M.P. (2006). Sustainable Management of Water 
Resources: An Integrated Approach. Edward Elgar Publishing, 384. 

GWP (2004). Global Water Partnership Strategy 2004-2008. Global Water Partnership Report. Available at: 
http://www.gwp.org/About-GWP/Publications/Strategy-Documents/. 

GWP (2008). WRM toolbox. Available at: http://www.gwp.org/en/ToolBox/ [Accessed June 2008].  
MA (2003). Ecosystems and Human Well-being: A Framework for Assessment. Island Press, Washington, 

DC, 266. 
Sutton, R. & Morris, C. (2004). Flow Characterization Study Instream Flow Assessment Big Timber Creek, 

Idaho. US Bureau of Reclamation Report, Boise, Idaho, June 2004, 119. 
Sutton, R. & Morris, C. (2005). Flow Characterization Study Instream Flow Assessment Big Eightmile Creek, 

Bohannon Creek, and Hayden Creek, Idaho. US Bureau of Reclamation Report, Boise, Idaho, June 2005. 
183. 

Sutton, R. & Morris, C. (2006). Flow Characterization Study Instream Flow Assessment Upper Lemhi River 
and Canyon Creek, Idaho. US Bureau of Reclamation Report, Boise, Idaho, July 2006, 167. 

UN (2015). Transforming our world: the 2030 Agenda for Sustainable Development. United Nations. Available 
at: https://sustainabledevelopment.un.org/post2015/transformingourworld.  

UNEP (2007). Global Environment Outlook (GEO) 4 Environment for Development. United Nations 
Environmental Programme (UNEP), Malta Program Press Company Ltd, Valletta, Malta 2007. 572. 

UNESCO (2009a). IWRM Guidelines at River Basin Level. Part 1: Principles. UNESCO-International 
Hydrological Programme (IHP), World Water Assessment Programme (WWAP), Network of Asian River 
Basin Organizations (NARBO), 33. 

UNESCO (2009b). IWRM Guidelines at River Basin Level. Part 2-1: The Guidelines for IWRM Coordination. 
UNESCO-International Hydrological Programme (IHP), World Water Assessment Programme (WWAP), 
Network of Asian River Basin Organizations (NARBO), 176. 

WCED (World Commission on Environment and Development). (1987). Our Common Future, (“The 
Brundtland Report”), Oxford University Press, 383. 

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

4914 ©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print)



          
 

 

 
WATER BALANCE STUDY FOR A WATERSHED IN GODAVARI RIVER BASIN USING 

SWAT MODEL 
 
 

AMEY BAGUL (1), VIJAYA S. PRADHAN (2) & PRACHI BAGUL (3) 

 
(1)Research scholar, Civil Engineering Department, Jawaharlal Nehru Engineering College, Aurangabad, Maharashtra state, India 

ameybagul@ymail.com 
(2)Faculty, Civil Engineering Department, Jawaharlal Nehru Engineering College, Aurangabad, Maharashtra state, India 

(3)Research scholar, Civil Engineering Department, PES College, Aurangabad, Maharashtra state, India 
bprachi501@gmail.com 

 
 
 ABSTRACT  
 
Increased human activity, growing demands and limitations in water supply have made it absolutely necessary 
to pay greater and closer attention to the management of water resources. Water engineers and scientists are 
confronted with challenges of sustainable development and have the responsibility to meet these challenges, 
both at the macro-level of overall demand and supply and at the micro-level, by designing, operating and 
maintaining water resources with the objective of local sustainability. The present study aims to study the 
water balance of a watershed located in Khuldabad, Aurangabad, and Maharashtra, India. Digital Elevation 
Model (DEM), boundary map, land use map, soil map and weather data of the study area are the inputs to 
QSWAT. QGIS 2.6.1 Brighton was used to developed DEM and thematic maps, such as soil map, Land use 
Land Cover map of study area. The analysis has been carried out by using QSWAT1.2 for time period of 33 
year from 1979 to 2012. Daily data of precipitation, temperature, radiation, wind velocity and solar has been 
processed on monthly basis. The delineated watershed is divided into 14 sub basins. SWAT output gives the 
simulated result for hydrological parameter in graphical and numerical format. The SWAT output can be 
effectively visualized by SWAT Check 1.2. Hydrological components of sub basins are obtained on monthly 
basis using SWAT Check. The output of one sub basin is presented graphically and statistically. The total 
area under the 14 sub basins is 19.90 km2. The average monthly basin values of rainfall, surface runoff, water 
yield, sediment yield, evapotranspiration and potential evapotranspiration are obtained for the basin using 
SWAT Check. 
 
Keywords: Watershed; watershed development; Khuldabad; quantum geographic information system 

(QGIS); soil water assessment tool (SWAT). 
 
 
1. INTRODUCTION  

Water is a very essential resource for mankind. The availability of pure water is less in the region and one 
of the factors is dependent on rainfall, which is unevenly distributed. In the semi-arid region, rainfall is less and 
unpredictable, hence the demands of water for drinking and irrigation become critical. For any watershed 
development work, it is necessary to understand the relationship between the physical parameters of 
watershed and hydrological components and hence, the water balance approach is widely used for watershed 
management practices. SWAT is a basin‐scale, continuous‐time model that operates on a daily time step and 
is designed to predict the impact of management on water. The model is physically based, computationally 
efficient, and capable of continuous simulation over long time periods. In SWAT, a watershed is divided into 
multiple sub-watersheds, which are then further subdivided into hydrologic response units (HRUs) that consist 
of homogeneous land use, management, and soil characteristics. The HRUs represent percentages of the 
sub-watershed area and are not identified spatially within a SWAT simulation. Results from field-based HRU 
delineation may be quite different from the standard approach due to choosing a majority soil type in each 
farm field. This approach is flexible such that any land use and soil data prepared for SWAT can be used and 
any shape file boundary can divide HRUs. 
 
2. LITERATURE REVIEW 

Unde and Telore (2012) have mentioned that water is essential for the existence of the biotic world 
including human beings. Watershed is a hydrologic unit and is often used for the management and planning of 
natural resources. Watershed development is a need of hour for sustainable water resource development and 
management of rain shadow region. Mangrule and Kahalekar (2003) observed that recent technologies such 
as remote sensing and GIS support us to give a quicker and cost-effective analysis of various applications 
with accuracy for planning. It also gives a better perspective for understanding the problems and therefore 
helps Planners evolve a better solution for sustainable development. From the final output of these themes 
generate, Recharge wells, percolation tank and check dams are recommended for the study area, mainly to 
control sedimentation from the catchments. Jasorita et al. (2009) used the water balance assessment 
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approach to estimate the moisture deficit and moisture surplus for an entire watershed using Thornthwaite-
Mather (TM) model along with remote sensing and GIS for the study. Jain et al (2011) applied SCS approach 
to each cell in a gridded rainfall map yielded a grid of expected runoff. Evapotranspiration has been estimated 
using an energy balance model. An advanced and very high resolution radiometer has been used for 
preparation of various maps required for runoff and ET analysis. Sathian (2009) used SWAT model to analyse 
and quantify the water balance of a river basin. The predicted water balance components were also been 
compared with their measured or alternately computed counterparts.  

SWAT is a physically based and requires specific information about the meteorological parameters, soil 
type, topography, vegetation, and land use for a watershed. Physical processes associated with water 
movement can be studied. It is a hybrid model spatially based on hydrological response units (HRU)  that 
includes both conceptual and physical approaches. A central part of SWAT is the general water balance 
equation. Surface runoff is determined by the SCS Curve Number approach. The simulated results are 
visualized statically, graphically and numerically in QSWAT output. 
 
2.1 Object of study 

To generate SWAT analysis over selected study area located in Khuldabad district. For SWAT analysis, 
the methodology is divided in to four stages. To execute objective above, the collection of satellite data and 
survey of India topographical maps, collection of weather data and other collateral data covering the study 
area is carried out. Also, the land use data and soil data of the study is collected. 

 
3 METHODOLOGY 
 
3.1 The study area  

The study area is located in Khuldabad, Aurangabad, Maharashtra between the latitudes of 19° 57' 00" - 
20° 13’48” North and longitudes 74° 58’12.00’’ - 75° 31’48” East. It is covered by survey of India toposheet no. 
(46 p/4, 46 p/8, and 47 m/1, 47 m/5) with scale of 1:50,000. The study area has an average elevation of 729 m 
MSL with gently sloping rolling lands. The area is having the average annual rainfall i.e. less than 625 mm. 
Location of study area is shown in Figure 1. 

DEM of study area, boundary of study area, land use map, soil map, and weather data of the study area 
are the input data require to run the QSWAT. To develop the boundary map of study area, top sheets of scale 
1:50,000 were collected from survey of India department and georeferenced in QGIS environment. Then, 
digitization of boundary map was done in QGIS. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Toposheet of study area. 
 

3.2 Digital elevation model 
The DEM of study area was downloaded from Shutter RADAR Topography Mission (SRTM) of 90 m by 

90 m resolution. After that, by using QGIS vector tool, the boundary was created and DEM of area was 
extracted. DEM of the study area is shown in Figure 2. 
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Figure 2. DEM of study area. 
  

After this, DEM of the study area was processed to develop slope map and flow direction for watershed 
delineation. 
 
3.3 Land use land covers map 

By adding web map service (WMS), layer is provided by http://bhuvan.nrsc.gov.in in QGIS. The land use 
map of Khuldabad area was digitized and rasterized in QGIS. LULC map is shown in Figure 3.    
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. LULC map. 
 

3.4 Soil map 
Soil map of Maharashtra developed by NBSS, Nagpur was geo-referenced and used for digitized and 

rasterize soil map. The soil map for the area is shown in Figure 4. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

Figure 4. Soil map. 
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QSWAT Ref 2012.mdb file SWAT Code was edited by coping the usersoil.xls in excel. 33 years of daily 

weather data such as precipitation (mm), temperature (oC), wind velocity (m/s) and solar radiation (MJ/m2) for 
study area was downloaded from http://globalweather.tamu.edu site. The calculations of TMPMX, TMPMN, 
TMPSTDMX, SOLARAV, WNDAV have been carried out with the help of Microsoft Excel. The precipitation 
related parameters and dew point were computed using customized software called pcpSTAT.exe and 
dewpoint.exe. Then, all the results are copied to the WGEN_WatershedGan.xls file. 
In SWAT model, the delineation watershed gets divided into multiple sub-basins, then for each sub-basin the 
water balance components were calculated.  
 
4 RESULTS 

After successful running SWAT, the simulated result is obtained. The results can be visualized on the 
basis of total, annually daily, monthly and yearly. It gives all type of hydrological components for each sub-
basin. 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Obtained Sub-basins. 
 

In the present study, the 14 sub-basins are obtained. The total watershed area under sub-basins is 19.90 
km2. The output can be visualized graphically, statically and numerically.  
 

 
Graph 1. Graph of sub-basin for different parameter. 

 
Potential evapotranspiration, actual precipitation, surface runoff, water yield, average amount of 

precipitation, groundwater contribution of sub-basins on monthly basis are visualized as follow in Figure 6. 
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Figure 6. Hydrology of study area by SWAT checker. 
 

The total area under the 14 sub-basins is 19.90 km2. For sub-basin 1, the agricultural land is 53.75 ha 
and the forest area is 86.36 ha, which is 2.77 % and 4.45 % of the total watershed area, respectively. The 
average monthly basin values of rainfall, surface runoff, water yield, sediment yield, evapotranspiration and 
potential evapotranspiration are obtained for the basin using SWAT Check. The percentage area covered by 
the watershed of different land use area is obtained by the SWAT. It can be visualized by the report viewer. 
The HRU analysis for sub-basin 2 is as below. 

 
Table1. Hydrological Response Unit analysis Output. 

Land use pattern Area(ha) % Watershed area % sub-basin area 
Watershed 1939.09     
Barren area(BARR) 446.41 23.02   
Agricultural Land (AGRL) 1199.1 61.84   
forest area (FRST) 293.59 15.14   
Sub-basin 2       
Agricultural Land (AGRL) 43.19 2.23 31.55 
forest area (FRST) 22.82 1.18 16.67 

Barren area(BARR) 
 

70.90 
 

3.66 
 

51.79 

 
Table 2. Average monthly basin values. 

Month 
Rain 
(mm) 

Snowfal
l (Mm) 

Surfq 
(mm) 

Lat Q 
(mm) 

Water Yeild 
(mm) 

Et 
(mm) 

Sed. Yeild 
(mm) 

Pet 
(mm) 

1 6.52 0 0.16 0.11 19.28 10.38 0.09 134.12 
2 2.35 0 0.01 0.07 4.1 5.82 0 152.89 
3 6.62 0 0.14 0.06 1.94 8.24 0.05 237.4 
4 6.02 0 0.19 0.05 1.45 5.93 0.09 301.5 
5 18.48 0 2.18 0.07 3.18 13.05 0.53 375.99 
6 278.21 0 106.04 0.66 109.63 59.77 21.56 144.5 
7 490.8 0 246.14 1.71 294.37 62.51 52.11 70.97 
8 414 0 198.25 1.79 306.25 53.23 36.33 57.98 
9 392.03 0 184.46 1.87 321.3 58.26 35.88 67.38 

10 162.28 0 70.23 1.24 211.06 47.64 13.03 125.21 
11 70.56 0 23.75 0.58 116.68 28.38 5.14 123.1 
12 2.75 0 0.59 0.24 55.06 14.19 0 136.07 
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From Table 2, it seems that the quantified values of rain, sediment yield, water yield, ET, and PET are the 

average annual monthly basin values. The result shows that there is increase in discharge during wet month 
and decrease during dry period. 
 
5 CONCLUSIONS 

SWAT model proves to be an effective tool in simulating the hydrology of large basins at watershed 
scale. This gives simulated results of each parameter. The estimated parameters can be used for many other 
purposes of study, such as agricultural water management climate change impact assessment, flow 
forecasting, water quality assessment, etc. This water balance study minimizes the risk of drought and 
mismanagement, and hence leading to a proper utilization of water resource available. The water balance is 
the best way of determining availability of water in different components of hydrological cycle and changes in 
between these components. The open-source geospatial techniques were used to prepare various thematic 
maps of study area that influences land use, soil, drainage, and slope used as input for SWAT model. 
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ABSTRACT 
 
To assess distributed crop water requirement in a canal command, identification of different crops becomes 
essential. This paper attempted to identify multiple crops grown in the Rabi season (Nov/Dec to Feb/Mar) in 
the Tawa canal command (Madhya Pradesh, India) utilizing temporal LISS III (24m x 24m) and AWiFS (60m x 
60m) images. Initially, the interest class (irrigated agriculture) and non-interest class were segregated in 
developing land use land cover map. Then, irrigated crop pixels were masked prior to generating Normalized 
Difference Vegetation Index (NDVI) values of nine AWiFS images representing the Rabi crop season (23rd 
Oct’11, 11th Nov’11, 21st Nov’11, 10th Dec’11, 24th Dec’11, 12th Jan’12, 05th Feb’12, 20th Feb’12 and 10th 
Mar’12). Based on the NDVI profile and sample GPS points taken during field visits, four principal crops viz. 
wheat (74.68%), chick-pea (14.52%), sugarcane (2.42%), linseeds (2.32%) and others, mainly vegetables 
(6.06%) were identified in the command. In the study, apart from identification of crops, assessment of water 
availability in the Tawa canal command has also been made, wherein distributed (pixel-wise) 
evapotranspiration (ET) approach has been applied to estimate the crop water requirement. Regression 
equations between the NDVI values and corresponding crop coefficient of identified crops taken from literature 
(FAO 56) for the six consecutive months were developed. The coefficient of determination (R2) obtained 
between Kc-NDVI relations were in the range of about 0.65-0.95. Using this empirical equation, pixel-wise 
crop coefficient values from the corresponding NDVI values for six months were computed, and represented 
as crop coefficient maps (Kc map). Daily reference evapotranspiration (ET0) values for the six months were 
calculated using the FAO-56 Penman-Monteith equation, and were multiplied by the pixel-wise crop coefficient 
values, and thus, corresponding crop evapotranspiration maps (ETc map) were generated for six different 
months.  
 
Keywords: NDVI; Kc map; ETc map; Tawa canal command; RS based crop identification. 

 
 

1 INTRODUCTION 
Optimal management of available water resources in a canal command primarily requires correct 

assessment of water requirement by different crops, i.e. crop water requirement. However, for sound 
management and planning of water resources, one requires good and reliable information on water use. With 
the development of aerial and space borne multispectral sensors, it is now possible to acquire multispectral 
data from a fairly large area in the narrow and discrete bands of the electromagnetic spectrum on a repetitive 
basis. Remote sensing data acquired from space-borne platforms, owing to their wide synoptivity and 
multispectral acquisition, offer unique opportunities for the study of soils, land use/land cover and other 
parameters required for water demand assessment of large command areas. Water demand assessment of 
an area requires a thorough understanding of the water balance components, to act as the basic information 
needed for efficient utilization and management of water (Ambast et al., 2002a; Panigrahy et al., 2009). 

Evapotranspiration (ET) of a catchment is related to the systematic distribution of moisture and land 
cover over its extent. Knowing the way moisture and ET are distributed is a key factor in the successful use of 
water balance studies in a command. A large number of empirical and semi-empirical methods have been 
developed to estimate the component of the water balance attributable to ET. The standard methods use 
climatological data to estimate a potential ET that would occur if water were not limited, and use simple water 
balance methods to both modify the potential to an actual ET as well as to estimate the available water. 
However, in catchments with reasonable topographic variation, even if the regional potential ET based on the 
state of the atmosphere and intensity of solar radiation could be estimated accurately, the actual ET will not be 
uniform spatially. Most of the current water demand models are a non-spatial model, which uses point data of 
reference evapotranspiration and the crop coefficient values from available literature (Doorenbos and Pruitt, 
1977). However, the climatic data used to measure ET are highly spatially variable. Also the land use and the 
crop condition can vary from field to field, thus affecting the crop coefficients and thereby crop 
evapotranspiration rates. Hence, using crop coefficient values from available literature may provide a practical 
guide for scheduling irrigation, but considerable error in estimating crop water requirement can occur due to 
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their empirical nature (Jagtap and Jones, 1989; Panigrahy and Chakraborty, 1996). The advantage of remote 
sensing derived crop coefficient over traditional crop coefficient is that it represents a real-time crop coefficient 
that responds to actual crop conditions in the field and captures the field variability in between.  

In this study, major crops were identified using satellite imageries and GPS sampling and then 
relationships were developed between crop coefficients of identified crops in the command and normalized 
difference vegetation Index (NDVI) from remote sensing data, as both are affected by leaf area index and 
fractional ground cover, before estimating the distributed crop evapotranspiration. 

 
2 STUDY AREA 

Tawa canal system, situated in the Narmada valley (Hoshangabad district) of Madhya Pradesh, India, 
with a gross command area of about 0.04 million square kilometer, comprises of two irrigation systems viz. 
Left bank canal (LBC) and Right bank canal (RBC). LBC is originated from the left bank of the Tawa dam 
running towards west and RBC towards east. It is a gravity based irrigation system draining north and north-
west up to the Narmada River flowing east to west in the northern part of the command. The tail end of the 
LBC reaches Harda district irrigating about 1862 square kilometer of land. There are three distinct crop 
seasons practiced in the command. Kharif crop season is overlapped with the monsoon months and mainly 
rainfed. The sowing for the Kharif crops (Kharif paddy; Kharif soyabean) are generally started in the months of 
June-July and harvested by October-November. Immediately after harvesting of Kharif crops, people go for 
Rabi crops (Winter crops). The Rabi season starts by the months of October-November up to the months of 
February-March. Rainfall during this time is scanty in the command area, and hence, the Rabi crops are 
mainly dependent on the canal water supply and groundwater. Apart from the two major crop seasons, 
summer crops (vegetables) are grown in the command wherever provisions of irrigation are available. The 
design cropping intensity in the LBC is 138% of the Culturable Command Area (CCA) (Kharif-67%; Rabi-67%; 
Summer-4%), whereas the cropping intensity in the RBC is about 125% (Kharif-58%; Rabi-67%; Summer-nil) 
of the CCA. The existing cropping intensity in the LBC and RBC is about 165% and 154% of the CCA 
respectively. 

 
3 SATELLITE DATA USED 

Two LISS III (24 m x 24 m) images and Nine AWiFS (60 m x 60 m) images on-board IRS P6 were 
procured from NRSC, Hyderabad for generating land use/land cover map. Maximum likelihood supervised 
classification technique was used to separate the interest class (irrigated agriculture) and NDVI. One scene 
for each month of Rabi season was used for the development of spatially and temporally distributed ETc map. 
The dates of nine AWiFS images covering entire Rabi period are 23rd October 2011, 11th November 2011, 21st 
November 2011, 10th December 2011, 24th December 2011, 12th January 2012, 05th February 2012, 20th 
February 2012 and 10th March 2012. These images were used for NDVI profiling. The temporal dates have 
been considered based on quality image availability starting from pre-sowing period (23rd October 2011) to 
crop harvest (10th March 2012). 

 
4 CONCEPT AND METHODS 
 
4.1  Preparation of land use/land cover map 

Two scenes of IRS P6 LISS III of 27th January 2011 were selected for the land use/land cover mapping of 
(Rabi) seasons for the command area. The Survey of India (SOI) topographical sheets covering the present 
study area were scanned and geometrically rectified. The satellite data were geometrically corrected with 
respect to the SOI toposheets to impart proper projection, uniform scale and orientation. Supervised 
classification technique with maximum likelihood algorithm was used for image classification. Here, the ground 
truth information was fed to the computer which is called training process. Ground Truth (GT) information 
acquired from field visits and topographical sheets was fed to the computer in the form of spectral signatures 
and there by the segmentation of the categories for the entire scene was performed. 

 
4.2  Identification of crops 

The methodology consisted of selection of the datasets, pre-processing of the satellite data, generating 
Land use land cover (LULC) map and NDVI map, Mapping NDVI profile, accuracy assessment of classified 
images, and finally crop map for discriminated crops. Flowchart showing broad methodology followed in the 
study is shown in Figure 1. The nine AWiFS scenes were pre-processed using image to image registration 
and atmospheric corrections. Nine temporal AWiFS images were stacked in chronological order of their dates 
(each image represents as a band in the stacked image) before generating NDVI map. Pixels of the interest 
class i.e. irrigated agriculture were masked to the stacked NDVI temporal image where every band represents 
to a particular temporal dates. Sample NDVI values were collected to develop the NDVI profile corresponding 
to the GPS points of sample crops collected during field visit. Finally, major crops were identified and 
discriminated based on the NDVI profile and crop calendar of different crops grown in the command area. The 
main principle of detecting vegetation using NDVI is the high absorptivity of vegetation pigments (chlorophyll) 
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in the red spectral region and high reflectance in the near infrared spectral region. NDVI is highly correlated to 
the photosynthetic activity and indicates the greenness of the vegetation. Hence NDVI has been used for this 
temporal and multispectral data set for enhancement of the vegetation class and discriminating specific crops. 
The NDVI is calculated as given in Eq. [1] (Mishra et al., 2005): 

 

REDNIR

REDNIRNDVI






                                                                   [1] 

where, NIR  = near infra-red band of sensor, and RED  = red band of sensor. 

 
 

 

 

 

 

 

 

 

 

 
Figure 1. Flowchart showing methodology for the temporal crop discrimination. 

 
4.3 Evapotranspiration estimation using RS and GIS 

One scene(s) of AWiFS for six consecutive months of Rabi season were taken for estimation of 
evapotranspiration. From the classified scene representing the Rabi season, only the pixels representing the 
identified crops were chosen by a process called masking. NDVI values were calculated for each pixel 
representing identified crop (Ambast et al., 2002b; Morid et al., 2002; Gontia and Tiwari, 2008; Gontia and 
Tiwari, 2010; Panda, et al., 2010a; Mishra et al., 2015). For each scene(s), there were five-sample areas, and 
from each area, few pixels were chosen and corresponding NDVI values were noted down. The average of 
the NDVI values picked from each scene(s) was considered to be the representative value of NDVI for that 
scene(s). Thus, for nine scenes, nine NDVI values were obtained. Regression equations between the NDVI 
values and corresponding crop coefficients of identified crop taken from literature for the six consecutive 
months were developed. Using these empirical equations, crop coefficient maps (Kc map) were generated. 
Daily reference evapotranspiration (ET0) values for the six months were calculated using the FAO-56 
Penmann-Monteith equation (CROPWAT 8.0). Monthly average value of the ET0 was multiplied with the crop 
coefficient maps developed, and thus corresponding crop evapotranspiration maps (ETc map) were generated 
for six different months involving nine scenes. The flowchart indicating steps to generate Kc and ETc map is 
shown schematically in Figure 2. 

 
5 RESULTS AND DISCUSSION 
 
5.1 Development of crop NDVI profile 

NDVI profiling is the process of plotting mean NDVI values of different crops for different temporal dates 
during the entire crop period. In the study, temporal NDVI images from AWiFS data of different dates were 
generated for the interest class, i.e. irrigated agriculture. All the NDVI images were stacked chronologically to 
their dates such that every temporal dates becoming a respective band in the stacked image. GPS sample 
points of different crops collected during field visit on 25th November 2011 were superimposed over the image 
as shown in Figure 3. Sample NDVI values were collected from nine scenes from different probable crop 
signatures from the GPS superimposed images. Mean NDVI values was then derived as given in Table 1. 
NDVI values of different crops for different temporal dates have been plotted to develop the NDVI profile for 

Pre-processing LISS-III/ AWiFS images 

LULC from LISS-III 

Segregation of Interest Class 
 (Agriculture irrigated) 

Accuracy assessment of 
classified image 

Temporal NDVI images from AWiFS 

Layer stacking temporal NDVI images 
from AWiFS 

Temporal NDVI stacked images from 
AWiFS (Agriculture irrigated)  

NDVI profiling 
 (NDVI vs. Temporal AWiFS dates) 

Accuracy assessment of classified crop 
Crop map showing different 
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the entire crop period during Rabi season (Figure 4). Major crops grown in the Tawa command with their crop 
period is presented in Figure 5. 

 
 

 

 

 

 

 

 

Figure 2. Flow chart for crop evapotranspiration (ETc) estimation using RS and GIS. 
 

 
Figure 3. Sample crop points taken through GPS superimposed over LULC. 

Table 1. Mean NDVI values of different crops. 
Temporal AWiFS dates Wheat Pulses (Chick pea) Oilseeds (Linseed) Sugarcane Others 

23rd October 2011 0.1169 0.1766 0.2067 0.3560 0.2260 

11th November 2011 0.1392 0.1707 0.2214 0.3585 0.1871 

21st November 2011 0.1944 0.3285 0.4672 0.3660 0.2493 

10th  December 2011 0.2521 0.6895 0.6422 0.4136 0.3495 

24th December 2011 0.5125 0.7787 0.7543 0.5522 0.5975 

12th January 2012 0.7230 0.7851 0.7318 0.5764 0.3652 

05th February 2012 0.6999 0.5771 0.6515 0.6438 0.3909 

20th February 2012 0.6487 0.3402 0.5540 0.6519 0.5574 

10th March 2012 0.5527 0.2395 0.2659 0.6142 0.3919 

 

 

 

 

 

Multi-dates satellite data 

Image registration and 
atmospheric correction 

Vegetation index model 

Meteorological data 

Computation of ET0 

Kc map 
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Figure 4. NDVI profile of different crops. 

 
Crop type/ Crop 
period 

October November December January February March 

Wheat             
Peas             
Linseed             
Mustard             
Vegetables             
Sugarcane             

Figure 5. Crop period for major crops during Rabi season in the command area. 
 
5.2 Identification of crops for the Rabi season 

Different crops exhibit different reflectance properties at different growing stages. Further, it is also true 
that short duration crops (pulses) will achieve early maturity than long duration crops (sugarcane). Keeping 
these points in mind, NDVI profile indicated following major crops in the command during Rabi season: (i) 
wheat, (ii) chick-pea, (iii) sugarcane, (iv) linseed and (v) crops such as vegetables and orchards. As can be 
seen in the NDVI profiling (Figure 6), short duration crops such as pulses and oilseed were attaining early 
maturity (higher mean NDVI values) then wheat and sugarcane. Sugarcane was exhibiting a rather straight 
profile. Spatial distribution of major crops (Figure 6) indicated highest coverage for wheat (75%) followed by 
chick-pea (15%), sugarcane (2.42%) and linseed (2.32%). The details on the spatial distribution of different 
crops are presented in Table 2.  

 

 
Figure 6. Crop map showing major Rabi crops. 
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Table 2. Area coverage of identified crops. 
Crop type Area (km2) % cover 

Cereals (Wheat) 1166.15 59.33 

Pulses (Chick-pea) 561.87 28.59 

Sugarcane 55 2.80 

Oilseeds (Linseeds) 36.82 1.87 

Others (mainly vegetables, orchards, etc.) 145.73 7.41 

Total 1965.57 100.00 

 
5.3 NDVI based ETc Estimation 
 
5.3.1 Development of Kc map and ETc map 

The Kc map and ETc map for different months were generated by the digital image analysis of 2011-
2012 agricultural season of IRS-P6 AWiFS data of dated 23rd October 2011, 11th November 2011, 21st 
November 2011, 10th December 2011, 24th December 2011, 12th January 2012, 05th February 2012, 20th 
February 2012 and 10th March 2012. The average of the NDVI values picked from each scene was 
considered to be the representative value of NDVI for that scene for a particular crop. Thus, for nine scenes, 
nine NDVI values were obtained for each crop (Table 1). The corresponding crop coefficients of each crop 
were taken from literatures. NDVI values obtained in the month of October and November were minimum 
since crops were in its initial phase of development. It then increased linearly and touched maximum in the 
month of January-February signifying maximum crop coverage over the ground. It was also observed that 
NDVI values decreased as the crop attains maturity. 
 
5.3.2 Relationship between Kc and NDVI  

Regression equations between the NDVI values and corresponding crop coefficient of identified crops 
taken from literature (FAO 56) for the six consecutive months were developed. The Kc and NDVI values for 
different scenes used in regression relationship are given in Table 3. The regression equations developed for 
each crop are presented in Figure 7. The coefficient of determination (R2) obtained between Kc-NDVI 
relations were in the range of about 0.65-0.95. The analysis of regression showed that the equations were 
highly significant with high R2 values. 

 

   

  

Figure 7. Regression curves between Kc and NDVI values for different crops. 
 

Table 3. Kc* and NDVI values for different scenes used in regression relationship. 

Months 
Kc 
wheat 

NDVI 
wheat 

Kc  
chick 
pea 

NDVI 
chick pea 

Kc 
sugarc
ane 

NDVI 
sugarc
ane 

Kc 
linseed 

NDVI 
linse
ed 

Kc 
Other
s 

NDVI 
Others 

23-Oct 0.60 0.36 
11-Nov 0.50 0.34 0.25 0.33 0.80 0.36 0.27 0.31 
21-Nov 0.60 0.45 0.40 0.69 1.00 0.37 0.35 0.23 0.42 0.64 
10-Dec 0.75 0.51 0.60 0.78 1.00 0.41 1.00 0.44 0.64 0.73 
24-Dec 1.00 0.72 0.45 0.58 1.15 0.55 1.15 0.65 0.45 0.52 
12-Jan 1.15 0.70 0.35 0.38 1.25 0.58 0.35 0.35 0.32 0.33 
5-Feb 1.00 0.65 1.25 0.64 
20-Feb 0.75 0.55 1.25 0.65 
10-Mar  0.67 0.53     1.00 0.61         
*Source: FAO 56 
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R² = 0.9235

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

Kc-NDVI relationship (Wheat)

y = 0.5872x + 0.0872
R² = 0.779

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

Kc-NDVI relationship (Chick-pea)

y = 1.4128x + 0.3218
R² = 0.6558

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

Kc-NDVI relationship 
(Sugarcane)

y = 2.0937x - 0.1644
R² = 0.794

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

Kc-NDVI relationship (Linseed)
y = 0.6989x + 0.0679

R² = 0.8268

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

Kc-NDVI relationship (Others)

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

4926 ©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print)



          

 

 

Using this empirical equations, pixel-wise crop coefficient values from the corresponding NDVI values for six 
months were computed. Crop coefficient maps (Kc map) generated for different months based on NDVI is 
given in Figure 8. Climatic data collected from nearest weather station were used to compute the reference 
evapotranspiration. Daily reference evapotranspiration (ET0) values for the six months were calculated using 
the FAO-56 Penmann-Monteith equation. Monthly average value of the reference evapotranspiration was 
multiplied with the pixel-wise crop coefficient values, and thus corresponding crop evapotranspiration maps 
(ETc map) were generated for six different months. Crop evapotranspiration map (ETc) generated for six 
months based on NDVI are presented in Figure 9. The range of crop coefficient and crop evapotranspiration 
values (scene wise) based on NDVI are given in Table 4. 
 

Table 4. Scene wise range of Kc values and ETc values (mm) of different crops. 

Months 
Wheat Pulses Sugarcane Oilseeds Others 

Kc ETc Kc ETc Kc ETc Kc ETc Kc ETc 

23rd October 2011         0.3-1.05 
2.25-
3.15 

      

11th November 2011 0.25-0.77 
1.35-
2.25 

0.35-0.45 
1.15-
2.35 

0.4-1.15 
1.57-
4.19 

    
0.11-
0.45 

1.0-
2.3 

21st November 2011 0.68-0.89 
1.86-
2.38 

0.40-0.75 
1.55-
2.89 

0.37-1.18 
1.65-
5.11 

0.15-0.75 
1.05-
2.65 

0.32-
0.78 

1.34-
2.89 

10th  December 2011 0.93-1.17 
2.10-
2.75 

0.61-0.98 
1.87-
3.5 

0.55-1.25 
1.18-
5.28 

0.33-1.05 
1.55-
3.25 

0.51-
0.98 

1.37-
4.5 

24th December 2011 1.03-1.32 
2.17-
3.10 

0.41-0.84 
1.74-
3.89 

0.71-1.25 
1.5-
5.55 

0.61-1.15 
1.81-
3.87 

0.39-
0.86 

1.24-
5.36 

12th January 2012 1.10-1.16 
2.55-
3.76 

0.31-0.78 
1.35-
3.15 

0.61-1.31 
1.87-
5.76 

0.3-0.74 
1.74-
3.39 

0.31-
0.78 

1.35-
4.15 

05th February 2012 0.89-1.11 
2.67-
4.98 

    0.38-1.18 
1.45-
4.67 

      

20th February 2012 0.30-1.13 
1.27-
4.87 

    0.31-0.97 
1.57-
4.49 

      

10th March 2012         0.29-0.89 
1.15-
4.55 

      

 
It is observed from Table 4 that crop evapotranspiration values have an increasing trend as the season 

progress. It was minimum in the month of October-November and maximum in the month of February-March. 
Sometimes, the harvesting season extended to April also. The spatial resolution of AWiFS sensor is 60 m, 
that means a pixel represents 60 60 m2 in the real ground situation. Spatially distributed pixel-wise crop 
evapotranspiration computed from satellite image when multiplied with the pixel area gives the total volume of 
water requirement for that particular pixel. Thus total demand (in volume unit) in the command for each scene 
was estimated. The scene-wise ETc values (total demand) obtained for nine scenes based on NDVI are 
presented in Table 5.  
 

Table 5. Scene wise ETc values based on NDVI. 

Months 
Wheat Pulses Sugarcane Oilseeds Others 

ETc (mm) ETc (mm) ETc (mm) ETc (mm) ETc (mm) 

23rd October 2011     2.25-5.15    

11th November 2011 1.35-2.25 1.15-3.35 1.57-4.19   1.15-4.3 

21st November 2011 1.86-3.38 1.55-3.89 1.65-5.11 1.05-2.65 1.34-4.89 

10th  December 2011 2.10-2.75 1.87-4.50 1.18-5.28 1.55-3.95 1.37-4.5 

24th December 2011 2.17-3.10 1.74-3.71 1.5-5.55 1.81-3.87 1.24-5.36 

12th January 2012 2.55-3.76 1.35-3.15 1.87-5.76 1.74-3.39 1.35-4.15 

05th February 2012 2.67-4.98   1.45-4.67    

20th February 2012 1.27-4.87   1.57-4.49    

10th March 2012     1.15-4.55    
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Figure 8. NDVI based spatially and temporally distributed Kc map. 
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Figure 9. NDVI based spatially and temporally distributed ETc map. 
 
6 CONCLUSIONS 

Crop management at command level requires considerable efforts in terms of crop planning, water 
management, pest management, etc. When the area encompasses by the command is large, the task 
becomes more difficult to the command area authority for proper planning and decision making. With the 
arrival of technologies such as remote sensing and geographical information systems, NDVI based crop 
identification and discrimination in large areas helps planners in multiple ways. In the preset study, utility of 
LISS-III and multi-dates AWIFS images have been demonstrated for identifying and discriminating different 
crops during Rabi season in the Tawa command. Based on the NDVI profile and sample GPS points taken 
during field visits, four principal crops viz. wheat (74.68%), chick-pea (14.52%), sugarcane (2.42%), linseeds 
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(2.32%) and others mainly vegetables (6.06%) are identified in the command. Also in the study, demonstration 
has been made on how distributed crop evapotranspiration (ETc map) is prepared based on the relationship 
between crop coefficient and NDVI. This helps in estimating the demand and supply scenario in the canal 
command.  
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ABSTRACT  
 
Predicting and modeling river discharge is one of the most important issues for any hydrological studies. 
Accurate discharge prediction leads to better performance in other operation or studies such as reservoir 
operation or flood plain mapping. Due to this importance, many studies have been done to improve the 
performance of hydrological models. Among of these models, artificial intelligences (AIs) are the state-of-the-
art methods which bring proper results with limited variety of data. In this study, ANN model was applied on 
Jajrood River at Latyan Dam basin in Iran. Sixteen years of daily precipitation and discharge were the main 
inputs of the model. Beside these, due to seasonal rainfall in arid and semi-arid area, months of the year were 
also applied in the model. Four scenarios of inputs, which had different elements, were determined and results 
of these states were compared. Results showed that in the first one, which had months of the year and three 
days of rainfall and six days lagged data of previous discharge had the lowest root mean square error (RMSE) 
and the highest correlation coefficient (R) result among other scenarios. Therefore, months of the year could 
be alternative data for all elements which change during the year such as wet season, soil moisture condition, 
and etc. which are not available or not easy to be obtained. 
 
Keywords: River discharge prediction; artificial neural network (ANN); Jajrood River; Latyan Dam; Iran. 
 
 
1 INTRODUCTION  

River discharge is one of the most important data in water resources engineering. Predicting the river 
flow rate is very important for planning and developing the civilized area which can be affected by the river. 
Precise predicting multi-scale inflow discharge (such as daily, weekly, monthly and seasonal) is very critical 
and helps to plan or operate many structures such as bridge, channels, reservoir, hydropower generation, 
flood protection, irrigation management and other hydrological applications efficiently (Araghinejad et al., 
2006; Solomatine and Shrestha, 2009; Othman & Naseri, 2011; Danandeh Mehr et al., 2014; Yaseen et al., 
2016). In addition, accurate short-term forecasted data are valuable in developing flood warning systems and 
risk control beforehand (Chiang et al., 2004; Guven, 2009; Szolgayová et al., 2014; Yaseen, 2015).  

Researchers are always trying to develop and apply various methods to receive an accurate prediction of 
river discharge. Scientists tried to predict the peak flow by using empirical methods such as Dicken’s formula 
(1865), Fuller’s method (1914), Curve Number (CN) and etc. Among these methods, the CN method which 
was developed by the Soil Conservation Service (SCS) hydrologists in 1969, was considered one of the most 
accurate empirical methods because a lot of environmental parameters are involved in estimating the 
watershed runoff such as soil cover, hydrological soil group and condition, and etc. Researchers found those 
models are not accurate enough to meet their expectations, therefore they developed some physically-based 
models to model and predict the flow rate and erosion such as The Water Erosion Prediction Project (WEPP), 
Soil Water and Analysis Tools (SWAT), Système Hydrologique Européen TRANsport (SHETRAN), and etc. 
These models need a vast variety of environmental data such as soil type, evaporation, temperature, land 
use, Digital Elevation Model (DEM) and etc. To predict reliable flow rate easier and faster than 
aforementioned comprehensive models, hydrologists applied Artificial Intelligences (AI) methods such as 
ANN, Adaptive Neural-Fuzzy Inference System (ANFIS), Support Vector Machine (SVM), Extreme Learning 
Machine (ELM) and many other AI algorithms.  

Many researchers applied Multilayer Perceptron (MLP) models to predict flood discharge of a river 
because the model is easy to use and there are much proper software that runs MLP model. However, new AI 
methods and algorithms have become more complicated and more accurate. Ghorbani et al. (2016) compared 
the results of MLP, Radial Basis Function (RBF) and SVM models to predict river flow rate of Zarrinehrud river 
in Iran. They found that the SVM model provided more accurate results than MLP and RBF models. Although 
the high performance of the new AI algorithms, many researchers have tried to use rainfall and previous time 
stepped discharge data as the model inputs (Kerh and Lee, 2006; Ghorbani et al., 2016; Tayyab et al., 2016) 
to model the river discharge. On the other hand, there are many parameters which are as important as rainfall 
such as evaporation, temperature, soil hydrological condition, land cover, and etc., should be considered in 
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the model training. The aim of this research is to increase the prediction accuracy in a model by including 
other environmental parameters and finding the easiest and cheapest way to apply these parameters to the 
model. In this research, the performance of ANN model with different conditions will be compared to find out 
the effectiveness of other environmental parameters as the input to the model.  
 
2 STUDY AREA 

Jajrood River, which origins from Alborz Mountain range and ended to Namak Lake, is one of the longest 
rivers in Tehran province, Iran. The drainage area of Latyan Dam catchment up to Roodak hydrometric station 
was chosen as the study area. It is spread from 51.40 to 51.70 longitudes and 35.83 to 36.05 latitudes and 
covers 435.3 square kilometers (Zeinivand and De Smedt, 2009). This region has the semi-arid climate with 
annual precipitation 330mm and the average discharge of 7.53 (m3/s). All hydrometric and precipitation data 
were provided by Tehran Regional Water Organization and Iranian Water Resources Research Organization 
(TAMAB Co). Topography map was provided by National Geographical Organization. Figure 1 shows the 
position of the study area.  

 

 
Figure 1. The study area, Latyan dam drainage in Tehran, Iran. 

 
3 MATERIALS AND METHODS 

Artificial Intelligence (AI) models are used to forecast hydrological phenomena. Unlike physically-base 
models which need more detailed information, they operate like a black-box model (Kalogirou, 2001). ANN is 
one of AI algorithms which models data by the learning process, memorizing, and creating the relationship 
between data. It finds the relationship between inputs and outputs by finding optimum weight between them 
(Kalogirou, 2000; Shahverdi et al., 2015). A schematic structure of a typical multilayer feedforward neural 
network is represented in figure 2.  

 

 
Figure 2. Schematic of neural network architecture. 

 
Most of the meteorological parameters such as evaporation, temperature, rainfall pattern and etc., and 

environmental conditions such as plant canopy, are fluctuating during a year. These parameters are difficult 
and costly to collect. Whereas in each month of every year, these parameters are almost steady, based on 
month order, month number of the year was applied as a coefficient to the model.  

Sixteen years daily stream flow and rainfall records from 1991 to 2007 were used in the study. Since 
most of the records in Iran are stored based on Iranian official calendar, which starts from first day of spring, in 
this research, number of the month is applied in scale of 1 to 12, i.e. the first month of the year is 1 and the 
last month is 12, based on month order in the Iranian Solar calendar. To cover hydrological soil condition, 
rainfall data was lagged for 2 days.  
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Before the ANN process starts, outliers of the records were detected and replaced by mean of previous 

and next reliable records. To develop inputs of the models, 4 scenarios were designed to evaluate the effect 
of month coefficient on the model accuracy by comparing the performance of the ANN model. Only in two 
scenarios, month coefficient was applied as one of the model inputs. In one pair of scenarios with different 
month coefficient status, two-day lagged precipitation was used. Stream discharge was lagged for 6 days and 
used as input for all scenarios. Summary of each scenario is given in Table 1.  

 
Table 1. Summary of inputs at each scenario. 

Scenario No. No. of Inputs Month Coeff.  Precipitation  Discharge  

S1 10 Yes R(t-2), R(t-1), R(t) Q(t-6), Q(t-5), Q(t-4), Q(t-3), Q(t-2), Q(t-1)  

S2 8 Yes R(t) Q(t-6), Q(t-5), Q(t-4), Q(t-3), Q(t-2), Q(t-1) 

S3 9 None R(t-2), R(t-1), R(t) Q(t-6), Q(t-5), Q(t-4), Q(t-3), Q(t-2), Q(t-1) 

S4 7 None R(t) Q(t-6), Q(t-5), Q(t-4), Q(t-3), Q(t-2), Q(t-1) 

 
To minimize the errors of the model, the scaling of inputs and output were generalized to have the 

smaller numerical range (between 0 and 1) by using Eq. [1]: 
   

																																																														 ௜ܸ,௡௢௥௠௔௟௜௦௘ௗ ൌ 	
௜ܸ െ ௠ܸ௜௡

௠ܸ௔௫ െ ௠ܸ௜௡
 

[1] 
 

 
where, ௜ܸ,௡௢௥௠௔௟௜௦௘ௗ is the normalized value, ௜ܸ, ௠ܸ௜௡, and ௠ܸ௔௫ are the current value, minimum and maximum 
values in the dataset, respectively.  

In the next step, in MATLAB software, an MLP algorithm was applied to train, test, and validate the data. 
Each scenario was divided into two states. In the first state, an MLP with one hidden layer was applied and in 
the second state, the MLP was done with two hidden layers algorithms. The MLP model was evaluate with 
different size of hidden layers. The size of hidden layers for the first layer started from 1 to 4 times greater 
than the number of inputs in both state 1 and 2, and second layer size started from one to the number of 
inputs. To find the best hidden layer size, Mean Square Errors (MSE) of the model, based on generalized 
data, were calculated and their results were compared to the best model which has minimum errors, in each 
scenario.  

Subsequently, after the suitable model in each state were defined, the model was run and then results 
were converted to their scale and compare with the original data. Two model performance indicators, namely 
Correlation coefficient (r), and Root Mean Square Error (RMSE), were applied to score the performance of 
each scenario (Legates and McCabe Jr, 1999).  

 
4 RESULTS AND DISCUSSIONS 

Figure 3 displays the monthly average rainfall and discharge of the study area.  
 

 
Figure 3. (a) Cumulative monthly rainfall and (b) monthly average stream discharge of Roodak. 

 
Scatter-plots of observed and predicted discharge for each state of all scenarios are presented in figure 

4. The correlation coefficient which indicates the accuracy of the model shows the performance and reliability 
of the model.  
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                         (a)                                               (b)                                               (c)                                               (d)    

 
                         (e)                                                (f)                                                (g)                                              (h)   

 
Figure 4. Scatter-plots of observed (Target) and predicted (Output) by ANN model of (a) single layer, 

(b) two-layer for scenario 1; (c) single layer, (d) two-layer for scenario 2; (e) single layer, (f) two-layer for 
scenario 3; (g) single layer, (h) two- layer for scenario 4.  

 
Evaluation indices result of the first scenario, which month of the year and 3 times lagged rainfall were 

applied to the model, showed the best performance of the model. A comparison of model assessment for all 
scenarios as well as optimum hidden layer size is briefly given in table 2 and table 3. In this table, ANN 
algorithm calculated MSE results based on generalized data.  

 
Table 2. Summary of ANN results for all single layer ANNs. 

Scenarios Optimal size MSE RMSE R 
S1 33 0.001028 1.616309 0.980086 

S2 29 0.001143 1.704549 0.978018 

S3 18 0.001129 1.693906 0.977992 

S4 13 0.001099 1.671474 0.978576 

 
Table 3. Summary of ANN results for all double layers ANNs. 

Scenarios 
Optimal size 

Layer 1 
optimal size 

Layer 2 
MSE RMSE R 

S1 29 3 0.001037 1.741032 0.976756 

S2 29 8 0.001047 1.755729 0.976346 

S3 14 3 0.00111 1.729587 0.977147 

S4 16 6 0.001049 1.732273 0.977014 

 
By comparing the RMSE and R of all the scenarios, single hidden layer algorithms have better results 

than multi hidden layer ones. MSE results showed that there are some exceptions to consider all the mono 
hidden layers to be more accurate than multi-layer one. Figure 5 illustrates a comparison between predicted 
results and existing records of stream flow for the best model in each scenario.  
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Figure 5. Observed stream discharge and predicted discharges for: (a) scenario 1; (b) scenario 2;    

(c) scenario 3; (d) scenario 4.  
 
5 CONCLUSIONS 

In this research, ANN model was applied with different inputs to compare their accuracies. In all models, 
a set of 6 times lagged discharge was the constant input. Moreover, two important factors, precipitation and 
seasonal effects, were compared by designing 4 different scenarios. Lagging the rainfall data up to 3 days 
was aimed to represent the soil moisture condition and month number of the year represented the weather 
conditions, for example as precipitation pattern or mean temperature and evaporation, as well as land canopy 
coverage in semi-arid area which mostly covered the study area by seasonal herbs that grows up in spring 
and summer.  

The research aims was applying environment parameters besides the precipitation and discharge data 
as the model inputs as cheap and easy as possible. The model assessment results prove that both 3 days 
rainfall data and month deficient data together provide more accurate results than other situations. Therefore, 
these 2 parameters can be a good representative of environmental conditions. However, by comparing 
scenarios 3 and 4, using the month coefficient without the lagged rainfall data do not provide precise result. 
Thus, month coefficient exclusively cannot be a good representative for all environmental factors. As the 
results show, a three-day precipitation records provide a better forecasting than only one day record and even 
one day records besides the month number.  

By comparing this research results with the results of other studies, the model performance is better than 
other methods which did not consider the seasonal or soil conditions and have been applied on the study area 
or similar areas.  

In conclusion, besides improving prediction algorithm by using state-of-the-art AI methods, providing 
adequate inputs that describe the system can bring better results. It is recommended to apply these inputs in 
any more accurate AI algorithms especially for the models problem in predicting some peak flows and 
compare the results with the results of this research.  
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ABSTRACT 
 
The knowledge of the state of snow water resources is crucial for managing water resources in mountain 
regions and beyond. Thereby, snow covered area (SCA) can be retrieved operationally from remote sensing 
data but available water in terms of snow water equivalent (SWE) can still vary substantially. Traditional 
methods to retrieve SWE have severe drawbacks like a lack of representativeness, labor-intensity or 
discontinuity in time. In this study, an approach of combining satellite based SCA maps and different types of 
in-situ SWE measurements is proposed. Based on that, the hypothesis that the predictive capability of an 
improved distributed snow model is improved by integrating this combined information is tested. In particular, 
the objectives are to test (i) whether a combination of remote sensing and in-situ data improves the model 
results and (ii) whether there are differences in the choice of the in-situ data. The state of the snowpack was 
monitored over two winter seasons by several measurement techniques with contrasting spatial and temporal 
characteristics. Measurements included (i) continuous point-scale measurements, (ii) several campaigns 
during the snow accumulation and melting season (terrestrial laser scanning and snow pits) and (iii) 
continuous above-ground cosmic-ray neutron sensing (CRNS) at an intermediate scale (footprint around 250 
m in radius). While continuous point-scale SWE data largely overestimated the snowpack, CRNS based SWE 
data represented values derived from TLS measurements quite well. Measured in-situ SWE data and SCA 
area maps (Landsat�8 and Sentinel-2A data) were combined within a multi-objective model calibration. The 
objective functions varied with regard to the used in-situ SWE data, where runoff and SCA was used 
throughout. The results showed that including intermediate scale CRNS data clearly outperforms the version 
with conventional point-scale data underlining the importance of the choice of in-situ data. 

 
Keywords: Cosmic-ray neutron sensing (CRNS); light detection and ranging (LiDAR); model coupling; alpine 

hydrology; water resources management. 
 
 

1 INTRODUCTION  
Snow represents an important component of the hydrological cycle, in particular, for mountain regions. 

On a seasonal scale, precipitation stored as snow in winter first and then contributes considerably to the total 
discharge and runoff generation in spring and early summer during snow melt. 

 The state of the snow water resources can be monitored using (i) ground observations, (ii) remote 
sensing and (iii) snow models with the best results are to be expected if these three approaches are combined 
(Sturm, 2015). These combinations have been used with respect to data assimilation (Thirel et al., 2013; 
Magnusson et al., 2014), inverse modelling of basin-wide precipitation (Shrestha et al., 2014; Rittger et al., 
2016) and multi-objective model calibration (Kirnbauer et al., 1994; Finger et al., 2011, 2015; Revuelto et al., 
2016). 

 Hydrological models can be classified according to their completeness of theoretical system description 
ranging from physically based to conceptual models. Snow hydrological models with different degrees of 
complexity exist (Essery et al., 2013; Avanzi et al., 2016) where individual (sub�) modules can differ in the 
degree of physically meaningful process description. Often even physically-based models are partly based on 
“hidden parametrizations” (Kirnbauer et al., 1994). Physically based models can be more robust in the face of 
changing environmental conditions. There is, however, a trade-off between model complexity and the number 
of parameters (i.e. data requirements).  

 Remote sensing data are usually available for complete hydrological basins. In mountain regions, space-
borne remote sensing products are limited to snow covered area (SCA) products from optical satellites with 
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varying spatial and temporal resolution (Dozier, 1989; Dietz et al., 2012) or Synthetic Aperture Radar (SAR) 
satellites with high spatial resolution (Nagler et al., 2016; Rondeau-Genesse et al., 2016). Thereby, optical 
data are limited by cloud coverage, while SAR based data are not suitable for discriminating dry snow from 
snow-free ground.  

 Ground-based data is therefore needed to combine remote sensing data of snow extent with information 
on snow mass. Traditional ground observations like snow pits or snow core surveys (Proksch et al., 2016) are 
labor-intensive and suffer from other drawbacks such as low repeat frequency. Continuous measurements for 
obtaining snow depth (SD) or snow water equivalent (SWE) at index stations are potentially subjected to 
temporally varying biases as compared to a larger area (Winstral and Marks, 2014; Grünewald and Lehning, 
2015). Terrestrial laser scanning (TLS) (Deems et al., 2013) has the potential of measuring the distribution of 
snow depth but is also usually limited to dedicated campaigns. Therefore, recent developments of techniques 
measuring at an intermediate spatial scale of several hectares like acoustic sounding (Kinar and Pomeroy, 
2007), above-ground gamma-ray scintillators (Choquette et al., 2013) or above-ground neutron counters 
(CRNS) (Sigouin and Si, 2016; Schattan et al., 2017) are promising.  

 In the present study, we hypothesize that the predictive capability of snow models is improved by 
integrating SCA maps and snow measurements at intermediate spatial scale. In the frame of the operational 
flood forecasting system for the Inn River (Austria), the combination of an improved snow hydrological model 
with high resolution SCA products and SWE measured at different spatial scales were applied and evaluated. 
 
2 STUDY AREA AND MONITORING ACTIVITIES 

The study focuses on the headwater basin of the Fagge River, a major tributary to the Inn River in the 
Austrian Alps. The upper Fagge catchment drains an area of 51.85 km² at the main alpine ridge and is highly 
glacierized (Figure 1). The elevation ranges between 1,915 and 3,509 m.a.s.l. with an average elevation of 
2,830 m.a.s.l.. As of 2006, 39 % of the basin was covered by glaciers. Forest cover at the basin outlet is very 
sparse with only a small number of individual trees occupying the lowermost parts of the basin. The basin is of 
high interest for water resource management as it comprises the main natural inflow to the Gepatsch reservoir 
with an installed capacity of 325 – 392 MW. An automated weather station (AWS) is operated within the area 
located at an elevation of 2470 m.a.s.l. which also measures a number of snow parameters including SD and 
SWE. Several TLS campaigns have been conducted to characterize the distribution of SD and SWE in an 
area of about 500 m around the AWS (see Figure 1). In addition, a CRNS was installed in 2014 providing 
continuous values of SD and SWE at the scale of ~ 200 x 200 m. For additional information about the 
experimental site and the monitoring activities, we refer to Schattan et al. (2017). 
 

 
Figure 1. Sentinel-2A scene (Aug. 2015) of the study area (yell. triangle = gauge; black square = TLS area). 

 
3 DATA AND METHODS 
 
3.1 Available datasets and study design 

The experiment included a model warm up period (10/2012 – 09/2013), a calibration period (10/2013 – 
09/2015) and a following validation period (10/2015 – 09/2016). For the initialization of the firn and glacier 
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storages, a deterministic model run from 10/2003 (low firn cover due to above-average summer temperatures) 
to 09/2012 (beginning of the warm up period) was used. The overall time-step for all simulations was one 
hour. 

 An improved snow model vertically coupling components from both models currently applied within the 
flood forecasting system of the Inn River (see section 3.3) is intended to describe the dominant processes of 
alpine basins in a physically more meaningful way. To ensure this, the model was evaluated against a number 
of different environmental datasets being available for a multi-objective model calibration and validation: 

i. Discharge measurements at an hourly time-step at the basin outlet (for the complete time-series); 
ii. Landsat-8 and Sentinel-2A derived binary SCA maps (16 scenes for calibration, 5 for validation); 
iii. Continuous point-scale SWE measurements at the AWS with a footprint of approximately 1 m² 

(10/2014 – 09/2016); 
iv. Continuous CRNS based SWE measurements at the AWS with a footprint of approximately 

200 x 200 m (03/2014 – 06/2014 and 10/2014 – 06/2016); 
v. Distributed TLS based SWE maps covering the area around the AWS (11 during the calibration 

period and 6 during the validation period). 
 The multi-objective calibration of the model includes discharge data, snow covered area maps and 

continuous ground based SWE measurements based on point-scale and CRNS data. TLS measurements 
were used for validating both the continuous SWE data and the model runs. 
 Point-Scale SWE data were obtained by a Snow-Pack-Analyzer (Stähli et al., 2004). CRNS based SWE 
was derived from neutron count rates [N · h-1] using Eq. [1] (Schattan et al., 2017). TLS based SWE were 
spatially weighted with respect to the distance to the AWS (Köhli et al., 2015). For areas with melting snow, 
SWE was limited to 200 mm to reflect the characteristics of the CRNS measurements (Schattan et al., 2017).  
  
 

SWEሺNሻ	= 
12.571

൬
N

5307.466൰ 	-	0.432
	-	16.194 [1] 

 

   
 In Figure 2, point-scale SWE and CRNS SWE are compared to TLS based SWE values. The CRNS 
derived SWE values have a good agreement with TLS SWE campaigns. In contrast, point-scale SWE largely 
overestimates the snowpack during the 2014/15 winter season as compared to TLS measurements. 
 

 
Figure 2. Comparison of (1) point-scale SWE and (2) CRNS SWE with TLS based SWE. 

 
3.2 Model input data  
 The basic data for model setup were derived from the digital elevation model of Tyrol, which was 
resampled to a spatial resolution of 50 m, and the Corine Land Cover 2006 data. For a more detailed 
representation of the glacier borders, the Corine data was refined by the third Austrian Glacier Inventory (AGI-
III) of the year 2006 (Fischer et al., 2015). Additional terrain data (e.g. LAI, roughness height, snow-free 
albedo) needed to calculate evapotranspiration were derived from the ECOCLIMAP II dataset (Faroux et al., 
2013).  
 As meteorological model forcing the analysis data from the operational analysis and nowcasting system 
INCA (Integrated Nowcasting through Comprehensive Analysis) (Haiden et al., 2011) was used. The model 
requires temperature, precipitation, wind speed, relative humidity and global radiation. The 1 km centroids of 
the INCA Analysis data were interpolated to the target grid of the model by Inverse Distance Weighting (IDW). 
Additionally, a variable lapse rate from a moving window of the 24 nearest neighbors was applied to 
temperature and precipitation data. Default lapse rates were used if the r² of the regression model was below 
a defined threshold set of 0.3. 
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3.3 Improved Snow Model 
In its current setup, the flood forecasting system for the Inn River uses a modular hybrid hydrological-

hydraulic approach (Achleitner et al., 2009). Tributary catchments are modelled with two serially linked 
hydrological models. Highly glacierized headwater catchments are modelled with the fully distributed snow 
and ice melt model SES (Asztalos, 2004; Asztalos et al., 2007). Non-glacierized catchments are modelled with 
the semi-distributed water balance model HQsim (Achleitner et al., 2012). Both hydrological models include 
conceptual process representations without physical meaning resulting in potentially large structural 
uncertainties (Bellinger et al., 2012; Schöber et al., 2014).  

The distributed snow and ice melt model SES (Asztalos, 2004; Asztalos et al., 2007) is a representative 
of a medium complexity energy and mass balance model, a model type which generally show a good trade-off 
between model performance in terms of runoff prediction in alpine terrain and complexity (Essery et al., 2013). 
The model is a single layer snow model solving energy and mass balances on a grid with a resolution of 
50x50 m. Firn and glacier ice are represented as additional layers. The model inputs are (i) air 
temperature [°C], (ii) the total amount of solid and liquid precipitation [mm], (iii) relative humidity [%], (iv) wind 
speed [m s-1] and (v) global radiation [W m-2]. Preferential deposition and redistribution of snow due to gravity 
and wind transport are parametrized based on slope and curvature of the terrain (Blöschl et al., 1991a). The 
energy budget calculation explicitly accounts for terrain induced effects on shortwave irradiance like self-
shading and terrain shading. Snow albedo is altered with solar angle and energy input into the snow pack 
(Asztalos, 2004). Incoming long wave radiation is calculated based on air temperature, relative humidity and 
cloudiness (Blöschl et al., 1991b). For outgoing long wave radiation a snow temperature of 0 °C and a high 
emissivity are assumed (Blöschl and Kirnbauer, 1991). A bulk parameterization is used for processes 
associated with thermal conductivity and liquid water storage capacity (Braun, 1985; Blöschl and Kirnbauer, 
1991). Simulated snow melt is routed using five parallel Nash-cascades for (i) soil, (ii) snow-free rocks, (iii) 
snow-covered terrain, (iv) the snow-free firn area and (v) the bare part of the glacier (Asztalos et al., 2007). 
The semi-distributed water balance model HQsim (Kleindienst, 1996) is a conceptual rainfall-runoff model for 
alpine environments based on the Hydrological Response Units (HRU) approach. HRU delineation follows 
elevation, aspect and vegetation type. The requirements for the model forcing data are parsimonious and 
include only air temperature [°C] and precipitation [mm]. The model lacks a module for snow redistribution. 
Snowmelt is calculated by a modified degree-day approach where self-shading is accounted for. In analogy to 
SES, the onset of snow melt is delayed by the concept of “cold content” (Braun, 1985; Blöschl and Kirnbauer, 
1991) defined as the sum of negative temperature accumulated over previous days. Soil infiltration and 
surface runoff are separated by a parameterization of contributing area (Achleitner et al., 2012). A closed form 
equation is used to calculate hydraulic conductivity within the soils as a function of volumetric soil moisture 
and saturated hydraulic conductivity (van Genuchten, 1980). The runoff concentration is computed according 
to the time-area method and routing is based on a non-linear storage release with adaptive time-steps for 
each channel segment. Flow velocities are calculated using an equation for steep channels (Rickenmann, 
1996).  

The improved vertically coupled model uses approaches of both hydrological models. Following the 
“Dominant Process Concept” (Blöschl, 1999; 2001), distributed and semi-distributed modules were combined. 
All processes highly influenced by terrain and energy budget were calculated on a distributed domain with a 
resolution of 50x50 m. Accumulation and melt of snow, firn and ice were calculated using the routines 
implemented in SES. Water available for infiltration and runoff generation (i.e. melt water and rain) and 
potential evapotranspiration (Monteith, 1965) were aggregated for each HRU as input for the semi-distributed 
part of the model. Actual evapotranspiration, soil water storage, runoff concentration and routing were 
modelled based on the HQsim scheme. 
 
3.4 Combining the model with remote sensing data and ground measurements 
 To combine the model with remote sensing data and ground measurements, a multi-objective calibration 
approach was applied. Therein, discharge, snow extent (SCA) and snow mass were used to assess different 
aspects of the model. The individual goodness of fit values used to derive a combined goodness of fit value E 
(Eq. [2]) are explained in the following: 
 The modeled discharge at the basin outlet was compared with measured discharge data using the Kling-
Gupta-Efficiency (KGE) (Kling et al., 2012) as this measure combines the coefficient of variation, a coefficient 
of variation ratio and a bias ratio. A binary SCA map was derived from modelled SWE data using a threshold 
of 5 mm and was used to assess the accuracy of modeled against observed SCA (ACC) (Zappa et al., 2003). 
A KGE value was also calculated for evaluating modeled and observed SWE data. For point-scale SWE data, 
observed values were compared with the values of the grid cell where the AWS was located. To compare with 
CRNS SWE data the modeled SWE values of individual grid cells were spatially weighted with respect to the 
distance to the AWS (Köhli et al., 2015). For grid cells with melting snow, SWE was limited to 200 mm 
(Schattan et al., 2017). 
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 In Eq. [2] the formulation follows the concept of KGE (Kling et al., 2012) where both the combined 
efficiency and its components have their maximum at unity and the combined efficiency is dominated by the 
component with the poorest fit. The index of the overall efficiency represents whether point-scale SWE (i = 1) 
or CRNS based SWE (i = 2) was evaluated. Both realizations were calibrated separately by a simulated 
annealing algorithm (Kirkpatrick et al., 1983) with 2,000 samples using the overall efficiency E as objective 
function. 

  
 

Ei	=	1	-	ටሺ1	-	KGEQሻ2	+	ሺ1	-	ACCሻ2	+	൫1	-	KGESWEi൯
2
 

[2] 
 

  
where i refers to the respective SWE time series used 
(point-scale SWE or CRNS SWE) 
 

 
 

 

4 RESULTS AND DISCUSSIONS 
 For both realizations, the best percent of model runs, i.e. the 20 best parameterizations in terms of model 
efficiency E in the calibration period, was evaluated regarding the model’s capability to predict (i) discharge at 
the stream gauge, (ii) the spatial and temporal patterns of SCA and (iii) the temporal evolution of the snow 
storage in terms of SWE.  
 

 
Figure 3. Model performance with regard to discharge (KGEQ) and snow extent (ACC) using point-scale 

SWE (E1) or CRNS SWE (E2) in the objective function. 
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Figure 4. Model performance in terms of representing the temporal dynamic of the snow storage where 
(1) indicates using point-scale SWE in the objective function and (2) using CRNS SWE. The grey area 

represents the range of modeled SWE values based on a subset of the 20 best model runs. 
 
 The predictability of discharge and snow extent in the calibration and the validation period are shown in 
Figure 3 with boxplots of KGEQ and ACC for both objective functions. In general, both performed reasonably 
well with regard to discharge and show a high agreement for snow extent. The calibration including CRNS 
based SWE, however, slightly outperformed the calibration with point-scale SWE data with regard to 
discharge.  
 Further insights on whether the parametrizations are physically meaningful, or discharge and snow extent 
are predicted well but for the wrong reasons, are given by evaluating the temporal evolution of the modeled 
snow storage. Time-series of SWE measured by CRNS and TLS were compared against model predictions 
(see Figure 4). This parameter is well represented for the realization including CRNS SWE data, showing a 
reasonable bound set by the best simulation runs. Both, the model results and the measured CRNS SWE 
time-series have a good agreement with TLS SWE campaigns. In contrast, simulations calibrated based on 
point-scale SWE largely overestimated the snowpack during the 2014/15 winter season in all runs. 
Furthermore, the spreads of simulated SWE were large for both, calibration and validation periods. The good 
overall performance of this realization seems not to be based on a sound representation of the principle 
physical processes, but the results from compensation by other model components. 
 
5 CONCLUSIONS 
 A combination of a physically based model, remote sensing and ground observations shows high 
potential for building physically sound snow hydrological models. The results, however, also underline the 
importance of the choice of observation data for multi-objective model calibration.  
 Particularly, in highly heterogeneous environments like alpine headwater basins, the scale of the 
measurement matters. Measurements with a small footprint can result in temporally variable biases caused by 
small-scale heterogeneities. This in turn can lead to substantial model uncertainty. Therefore, for variables like 
SWE, intermediate-scale ground measurements like CRNS provide a promising information to improve the 
predictive capability of snow hydrological models.  
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ABSTRACT  
  
Particle swarm optimization is a very well-known method as it has a strong background in optimization field to 
solve different non-linear and complex problems. This study made a fine tuning in the particle updating 
process of standard PSO algorithm. The updated algorithm is used to develop and optimize a reservoir 
release policy for monthly basis. The historical data of inflow to the dam/reservoir has categorized in three 
different categories (high, medium and low). The problem formation has done on the basis of release and 
storage constraints. The objective function which was aimed to be minimized has been considered as the 
water deficit from the release. The monthly releases are taken as the main objective variables and are 
essentially control the water deficit of the process. The standard form of PSO is then compared with the 
updated version and the results are analyzed by adopting different performance measuring indicators such as 
reliability, vulnerability and resilience. These performance measuring indices are calculated from the outcome 
of the simulation process by feeding the optimization model with the actual historical data of inflow. From the 
results of the simulation and the value of the indicators, the study shows updated PSO algorithm performs 
significantly better in optimizing reservoir releases policy. 

 
Keywords: Reservoir release policy; optimization; swarm intelligences; PSO; water resources management.  

 
 

1 INTRODUCTION   
Belonged to the Swarm Intelligence (SI) family, Particle Swarm Optimization (PSO) is a very popular tool 

in solving real life optimization problems. When the system is nonlinear and has several conflicting constraints, 
the PSO works very well and it is also relatively faster and easy to apply (Kennedy and Eberhart 2001). The 
simplicity and the applicability of PSO and the other SI techniques attracts many researchers to use it in 
solving different hydrological problems. This study was also intended to do same, including updating the key 
mechanism of the particle movement (velocity update) in the standard PSO algorithm. Both the standard and 
the updated PSO were formulated and tested to optimize the release policy of a reservoir system. The 
monthly releases were taken as decision variables bounded by release constraints. The formulation of the 
reservoir system was also considered to be subjected to the storage constraints and continuity equation. The 
problem has been formulated as a simple method that can be optimized by any improved population-based 
search techniques. Also, the representation of the release policy itself has been modified in such a way that 
the decision maker may have a clear understanding in deciding on the release amount. For verification of the 
model, simulation has been undertaken and the simulation results have been analyzed using the risk analysis 
approach to compare the models efficiency in minimizing water deficit. The Aswan High Dam (AHD) was 
considered as the case study in this case, which contributes as a major irrigation structure in Egypt. Some of 
the literature related to this study can are given here- Hossain MS. et al. (2016), Hossain MS. et al. (2015), 
Ahmed and Sharma (2005), El-Shafie and El-Manadely (2011). 

The basic idea of PSO comes from the intelligent behavior of a flock of birds moving around in search of 
food. The choreography of the flight allows them to share all the information about the food once it is 
discovered. The direction and velocity of the flight change accordingly on the basis of this information. 
Kennedy and Eberhart (1995) first proposed the PSO algorithm. They described the social behavior of the 
flock on the phenomena of comparing two important decision properties named as “local best” and “global 
best”. Local best is the currently observed best decision for a particular food and the global best is the best 
decision found. Later, He et al. (2004) proposed passive congregation theory to improve the performance of 
standard PSO, inspired by the mathematical model of the social behavior of living organism. 
 
2 PROBLEM FORMULATION FOR RESERVOIR SYSTEM OPERATION 

 In AHD, the operation policy has the flexibility of release no flow to maintain the storage bounds and 
specifications. 7.5 Billion Cubic Meter (BCM) has taken as the maximum release in a month. So, the release 
constraint is 0 ≤ Rt ≤ 7.5 BCM. The water level for any time should be in the range of 147 to 183 m. So, in 
terms of the storage, this study has considered it to be 32 ≤ St ≤ 162 BCM (for t = Jan, Feb, Dec). The actual 
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natural inflow data is used to run the model and for simulation purposes. Eighteen years (Aug 1980 to Jul 
1998) of historical data of monthly inflow was taken to discretize the whole inflow pattern into three states. 
Each inflow state, as well as the release curve generated from any optimization model, controls the release 
option.  

 Generally, in the reservoir operation, the authorities may face two types of constraints in deciding on the 
release amount, bounds on release volume and keeping the water level within a safe operational zone. In 
order to maintain these aspects, the problem has been formulated in the following form:  
 • Objective function / Fitness function: 
- Minimization of water deficit (equation 1) 
 

                                                                               
  

• Subjected to:  
- The releases (R) for any time period (t) must be within the upper and lower bounds,  
 

    
 
 
- Storages (S) for any time period (t) must be within the upper and lower bounds, 
 
 
                                                       [3]                                                   
 
- Continuity equation should be satisfied for all time period, t. 
 
                                                          
 

The concept of using a penalty function is based on adopting an extra parameter in addition to the 
objective function that controls the constraints and helps to eliminate the decision variables that cause 
violation of any constraints. As Equation 1 represents a minimization problem, the model always preferred to 
obtain the minimum value of Z. So, if any release policy caused the reservoir storage to violate the boundary 
condition (Equation 3), then the penalty term will increase the value of Z based on the violation magnitude. 
The variables that increase the value of Z have been denoted as weaker solutions and have been eliminated 
to reach an optimum state. 
 
3 STANDARD PSO IN RESERVOIR SYSTEM OPTIMIZATION  

 Like the other heuristic approaches, PSO begins with generating a random decision variable set. The 
random variables are called “particles” and the variable set a “swarm” (given in Equation 5 and 6). So, in a 
random release string consisting of 12 values of water volume to be released (R) from January to December 
the 12 releases are considered to be particles and the population set of these particles is considered to be a 
swarm.  
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                      [7] 
 
where, 
 popsize = population or swarm size 
 nvar = total number of variables 
 r  = random number between 0 and 1. 

min max0 and 0t tR R R R   

[1] 

[4] 
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 To generate the initial swarm for the PSO algorithm, Equation (7) has been used in this study. An 
equation (named the velocity update) controls the swarm in moving around the search space searching for the 
optimum. In each iteration, the algorithm saves the local optimum and compares it with the global (best yet) 
optimum values. Definitely, the criteria for being chosen as an optimum state depend on the fitness of the 
objective function.  

The candidate solutions (decision variables: releases) of the particles calculate and remember their own 
fitness. The position of any particle is accelerated towards the global best position by using Equations (8) and 
(9). In any search step t, the i’th particle use to update its candidate solution’s current position (xtij) by using 
local best (ptij) and global best (ptgj) position achieved yet. 
 
                                              
 
 

1 1 .t t t
ij ij ijR v R  

                                                                                        
 

where 
1t

ijv   = velocity measures for the particles, 

w   = inertial weight; control the velocity direction, 

1  & 2 = acceleration coefficient; should be > 1 (mostly taken as 2), 

1
tr  & 2

tr = random numbers; uniformly distributed between 0 and 1, 

t
ijR  = position of any particle at t, 

t
ijp  = best release options (providing lowest Z) at t, 

t
gjp  = best release options (providing lowest Z) achieved yet. 

 
  After generating the initial population (randomly generated monthly release options), the velocity update 

provides a new direction to the particles. With a new velocity, a new position is reached, as given in Equation 
9. The fitness (Z) is calculated by using the objective function (Equation 1) including the penalty for constraint 
violation and the best position of the particle is saved as the local best. The whole population (swarm) then 
turns towards the current best position until it finds another better solution than the current one. An iteration 
number need to be provided at the beginning of the algorithm. This iteration fixes the stopping criteria for the 
algorithm.  
 
4 UPDATED PSO WITH PASSIVE CONGREGATION THEORY 

 In 2004, He et al. (2004) proposed to add the passive congregation factor with PSO velocity update. 
Based on the mathematical model of Parrish and Hamner (1997), the aggregation can be referred as grouping 
of the organisms (such as fish schooling and bird flocking) by external physical forces. On the other hand, 
congregation is defined as grouping by social forces where the attraction source is the group itself. In passive 
congregation theory, any individual group members attract the other but they may show no social behavior 
(global best). In these congregations, information may be transferred passively rather than actively (Magurran 
and Higham, 1988). To adopt this opportunity, we need to add information randomly from the population and 
make sure that the position is shifting accurately towards the global best. 

In Equation 8, the third parameter, 2 2 ( )t t t
gj ijr p R  is classified as active congregation (He et al., 2004). To 

adopt the passive aggregation theory, He et al. (2004) proposed by adding another term to keep the model 
simple and uniform. The modified velocity function is given in Equation 8: 
 
 

where 
1t

ijX  = randomly selected particle from the swarm, 

3  = passive congregation coefficient, 

3
tr  = random numbers; uniformly distributed between 0 and 1 
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5 RESULT AND DISCUSSION 
The release volume depends on the inflow category, operational time period (monthly) and current 

reservoir storage or water level. For each inflow category, the release policies have been given for every 
month to consider the storage condition as input parameter. With this release curve, one is able to decide on 
how much water release would be optimum for a particular month of the year to properly minimize the water 
deficit. The optimal release options for the month of April are given in Figure 1. 
 

 
(a) High Inflow condition 

 

 
(b) Medium Inflow condition 

 

 
(c) Low inflow condition 

Figure 1. Release curves for the month of April for High (a), Medium (b) and Low (c) inflow condition. 
 

 Each release curve provides the release amount under different storage conditions. The characteristics 
of the curves showed logical expressions with regard to the decision to release water. For the high and 
medium inflow categories, the release curves able to meet the demand line for low storage amounts, as there 
is adequate water available to release from inflow. With increasing storage capacity, the suggested releases 
are more likely to meet the demand and for extreme storage conditions it is suggested that more than demand 
is released to keep the storage levels in safe ranges. 

 To check the model efficiency, we adopted a very classical approach by measuring three measuring 
indices: Reliability (Wurbs 1996), Resiliency (Loucks et al., 2005) and Vulnerability (Loucks et al., 2005), from 
the simulated results. The equation for these indices are given in Table 1.  
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Table 1. Performance measuring indices. 
Index Equation Variables 

Volumetric (
vR ) and 

Periodic (
pR ) 

reliability 

( / ) 100% ;

( / ) 100%
v

p

R v V

R n N

 

 
 

v = volume of water releases (model output) 

V = volume of targeted demand 
n  =  total no. of time period meeting the targeted 
demand (in months) 

N  = total no. considered time period (in months) 

Resilience ( R s ) R  = s
NS

NT
 

NS  = no. of satisfied (zero deficit) time period 
followed an shortage 

NT  = no. of total shortage period 

Vulnerability ( V ) 1

1
V [max(0,  )]     

for 1,2,.....

N

t t
t

D R
m

t N


  



  

m = no. of model failure period (water deficit ≠ 0) 

N  = total time period considered for simulation (in 
months) 

D = targeted demand 

R = water release (model output) 
 

 For simulation, actual data of the reservoir (inflow and storage) was feed to the release curves and the 
results from the curves are recorded for that particular month. Then, the final storage was calculated by using 
the continuity equation and used as an initial storage for the next month. The simulation steps for a total 
considered time period (T) are given in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Simulation process by using historical data. 
 

5.1   Reliability, Resilience and Vulnerability measures 
Among 216 monthly (18 years) releases, the PSO-PC release policy provided the exact water release as 

per demand 137 times (63.4 %). The standard PSO algorithm provided the exact required release127 times 
(58.8 %). Table 2 reports the information on these issues, including the events of exceedance and shortage. 
 
 

Actual inflow for the month t 

Historical 

Initial storage S for the month t 

Optimal release curve of the month t 

Release Rt 

Calculate initial storage S for t+1 Actual inflow for the month t+1 

Historical data 

Historical data 

Optimal release curve of the month t+1 

Release Rt+1 

Using continuity equation 
(Equation 4) 

The process continues for the all time period: 
t, t+1, t+2,........,T 

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print) 4949



  
          

  

 

Table 2. Periodic reliability and Vulnerability for AHD. 
Optimization 
techniques 

More than 
demand 

Meet the 
demand 

Less than 
demand 

Total no. of 
release 

Vulnerability 
(V) 

PSO-PC 
35.1 % 

(76 times) 

63.4 % 

137 times 

1.3 % 

3 times 
216 0.05 

PSO 
38.9 % 

(84 times) 

58.8 % 

(127 times) 

2.3 % 

(5 times) 
216 0.07 

 
 The vulnerability (V) of each model has been calculated by using vulnerability equation (V from Table 1) 

and also given in Table 2. From the simulation results of both the models, PSO-PC is comparatively less 
vulnerable than PSO.  
 

Table 3.  Resiliency measures from the simulation. 
Measures ABC PSO 
   
Resiliency (Rs)   15.5 14 
Max. no. of consecutive 
shortage period 

1 1 

 
The other effective performance indicator is resiliency, the recovering capability from a failure. The 

resilience equation (reported in Table 1) has been used to find out the resilience of both optimization model 
from the simulation results. Also, the maximum number of consecutive shortage (release less than demand) 
period has been calculated and saved for resilience measures. The resilience analysis of these two case 
studies is given in Table 3. In this case, PSO-PC performed slightly better as it shows larger Rs value. Also, 
the maximum number of consecutive shortage period is same in both cases. 

From these analysis, it seems that PSO-PC is more capable of providing optimum release for a reservoir 
system than PSO. The standard PSO was also a very good optimizer but PSO-PC performed better in terms 
of reliability, resiliency and vulnerability.  
 
6 CONCLUSION 

The PSO-PC is the improvement of the standard PSO by adopting passive congregation theory in 
particle movement. The primary objective of this study was to use this both version of PSO to optimize the 
reservoir release of AHD and compare the results. To test the performance, three basic indicators were 
adopted: Reliability, Resilience and vulnerability. All three indicators are indicating that both PSO acted very 
well in handling reservoir system but PSO-PC is more capable (5% more reliable, 0.02 less vulnerable and 1.5 
more resilience) in providing optimum results for a reservoir system. 
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ABSTRACT  
  
This study presents a copula-based chance-constrained optimization approach for integrated agricultural 
water and water resources management. The construction of water transfer projects brings new challenges to 
water resources management, especially in water rational allocation and supply risk with multiple water 
resources. Transferring water and local surface water are both influence factors of water allocation and the 
individual effect, and their combination should be considered to assess water supply risk better. Besides, due 
to the growth of irrigated area and water diversion from agriculture to municipality and industry, the lack of 
agricultural water become the obstacle of urban development. It is necessary to determine the laws of the 
relationship between water ability and the loss in different combination of multi-water resources. A copula-
based approach is proposed for estimating the joint probability of available multi-water and sampling from 
multivariate probability distribution. The multi-objective optimization model was employed to provide the 
optimal water allocation solution with multi-water resources. The relationship curves under the different multi-
water resources supply conditions between the joint probability and the agricultural shortage were fitted to 
assess the impact of multi-water resources on the loss caused by conveyance. The study also offers an 
approach for effective and reliable identification of important allocation model influence factors, responding to 
the priorities of different water resources. It can improve the ability of multi-water resources overall distribution 
and the adaptation to uncertainty water resources, aiming to reduce the water supply risk and achieve 
sustainable development. Furthermore, the results of the study emphasize the importance to improve and 
update transferring and local water management and relevant countermeasures in order to ensure future 
water security. 

 
Keywords: Uncertainty; joint probability; multi-water resources; water allocation optimization; agricultural shortage.  

 
 

1 INTRODUCTION 
 The optimal allocation of available water resources is quite necessary in areas of severe water shortage 
in China. To solve the contradictions between the supply and demand of water resources and to mitigate 
losses, water resource diversion and allocation have been developed. However, several uncertain factors may 
affect the performance of water allocation(Li et al., 2008; Zeng et al., 2015). For natural impacts, the 
assumption that the characteristics of available water resources will follow a probability distribution, which is 
affected by the flows of rivers, streams, varied precipitation, and runoff levels, etc. On the other hand, due to 
the growth of irrigated area and water diversion from agriculture to life and industry, the lack of agricultural 
water become the obstacle of urban development. It is necessary to determine the laws of the relationship 
between water ability and the loss in different environment. Water allocation plan development is not 
straightforward due to the limited available water resources and uncertainties. Previous research into optimal 
water resources has mostly focused on embodying various characteristics in deterministic values and 
intervals(Zhou et al., 2015; Zhuang et al., 2015), but only a few works have been done to consider the various 
complexities in terms of relationship of multi-water resources. Correspondingly, more in-depth research to 
water resources allocation associated with available water resources probabilities and agricultural water 
shortage should be considered, depending on the origins of the uncertainties. The study aims to provide 
scientific, timely, quickly decision-making to inter-basin water transfer management, to provide risk evaluation 
and decision support for planning water allocation and agricultural activities. 

 
2 MATERIALS AND METHOD  
 This paper assesses the implications of multi-water resources change on the water resource shortage for 
the Lunan water-receiving area (Figure 1) for a range of 800 scenarios from a combination of projected 
different water resources, demand and conveyance loss. The input data in this study come from historical 
literature review and statistical yearbooks.  
 The methodology described here is based on integrating the uncertainty analysis methods and 
mathematical modeling techniques, including a copula-based Monte Carlo simulation (MCS) and multi-
objective optimization tools. The statistical copula function was adopted to obtain the joint probability 
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distribution for water resources by separating their dependence from their marginal distributions. The most 
credible distribution was then used through the Monte Carlo simulation (MCS) to generate multivariate 

samples set for purpose of investigating the uncertainties of water resources. The -NSGA Ⅱ was used to 
estimate the water availability and shortage of different water users. The conclusion of the analysis is useful 
for the comprehension of the multi-water resources and consequently, the significance of certain water 
resources related management planning. The following subsections elaborate on the detailed description. 
 

 
Figure 1. Diagram of the study area. 

 
2.1 Copula function  
 In this study, copulas were used to describe the relevant relationships(Yazdi, 2014), which can make it 
easier to formulate multivariate models compared to other limited and complex models. Copulas are functions 
that link univariate marginal distribution to form a multivariate distribution. According to Sklar’s theorem (Sklar, 
1960), if the marginal distributions and are determined, the joint cumulative distribution function F with random 
variables x and y can be expressed with the function C as follows: 
 
         , , ,T LF t l C F t F l C u v �  [1] 
 
where  Tu F t ,  Lv F l , C is the copula function that connects the marginal and joint distribution,  is the 

parameter of copula function. If  TF t  and  LF l are continuous functions, the joint distribution can be uniquely 

determined by the marginal distribution and structure correlation. Three widely used one-parameter 
Archimedean copulas, Clayton, Gumbel and Frank copula were compared to choose the best-fit one in the 
study(Nelsen, 1998) (see Table 1). 
 

Table 1. Definition of the widely used one-parameter copula families. 
Copula 

type 
Copula function Range of parameter 

Clayton   1/
1u v

      0   

Frank 
  1 11

ln 1
1

u ve e

e

 



 



  
  

  
 0   

Gumbel      1/

exp ln lnu v
        1   

 

 The best family of copulas were determined by the maximum likelihood (ML) method. In the ML method, 
the copula function that has the greatest likelihood value is selected to fit over the data. Moreover, the copula 
parameter θ can be estimated by maximizing the following likelihood function: 
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      

   
0 01 1 1

0 01 1 1

ln , ; , , , , , , ln , ;

                                                   ln ; , , ln ; , ,

C T L

T L

L t l a a L F t F L

L t a L l a

     

   



 
  [2] 

 
where ln CL  is the log-likelihood function of copulas, 0 01 1, , , ,a a   and 1 are parameters of marginal 

distributions, the log-likelihood function ln L  is maximized to obtain the copula parameter  . 
 When the best-fit copula is chosen, the joint behavior that t and l both exceed specific values should be 
focused on. The joint impact of multi-water resources on the allocation was estimated using joint probability as 
the evaluation index. The joint probability is as follows: 

 
       ( , ) 1 ( ) ( ) ,T LP t l P T t L l F t F l F t l         [3] 

 
2.2 Generating synthetic multi-water resources 
 The inverse distribution function method was employed to generate a sample  ,t l  from the most fitted 

joint distribution. According to the Sklar theorem, the conditional distribution function  uc v  for V  given U u  

is presented as follows: 
 

        
0

, , ,
limu
u

C u u v C u v C u v
c v P V v U u

u u 

   
        

  [4] 

 
 For generating the sample  ,t l  of a pair of random variables (transferring and local surface water 

resources), the steps are as follows: 
(1) Generate two independent uniform (0,1) variates u  and w ; 

(2) Set    1
uv c w , where  1

uv c   is the inverse function of uc ; 

(3) For the pair  ,u v , set  1t F u  and  1l F v . So, the sample point is  ,t l . 

 In the first step, the Latin hypercube sampling (LHS) method (Mckay et al., 2000) was adopted to 
effectively reduce the unevenness and improve precision of sampling. 
 
2.3 Optimization model 
 As a multi-objective optimal allocation problem, the implementation of optimization schemes is 
necessary. In this paper, the ε-nondominated sorted genetic algorithm II (ε-NSGAII) as a popular multi-
objective evolutionary algorithm was introduced to solve the problems of optimal multi-water resources 
allocation. Compared with the other algorithm, ε-NSGAII can lead to less search failures and computation load 
for many engineering optimization problems. The appropriate allocation plans depend on their utilization 
efficiency and economic efficiency. Therefore, the regulated objectives in this paper included two objectives: 
the minimization of water shortage and allocation cost simultaneously. 
 Thus, the problem could be expressed as follows:  

(1) Allocation cost: 
 

 1
1 1

min
I J

ijt ij i
i j

f x c 
 

  [5] 

 
(2) Water shortage: 
 

 2
1 1

min ( )
J I

j i ijt
j i

f D x
 

    [6] 

 
where i denotes different water resources; j denotes water user; t represents the various scenarios of 
transferring and local surfer water resources, that is, t represents different joint probabilities; ijtx  is the amount 

of water supply of different water resource i distributed to different water users j under scenario t; ijc is the 

water supply cost of different water resource i distributing to different water users j; i represent the different 

priority of water resources; ijD  is the fixed target needs of water. In the study the water demand was assumed 

to be the same in all scenarios. 
 
 
 

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print) 4953



  
          

  

 

 These were subject to: 
(1) Restriction of the water supply amount: 

 

 max
1

J

ijt i
j

x W


  [7] 

 
where maxiW  is the maximum water supply amount of water resource i.  

(2) Restriction of water demand amount: 
 

 max min
1

I

j ijt j
i

D x D


   [8] 

 
where maxjD  and minjD  are the maximum and minimum water demand amount of water user j.  

(3) Restriction of water-carrying capacity: 
 

  
1

1 1
J

ijt it
j

Pr x W q


      
  
   [9] 

 
    2,  �                     [10] 

 
 In the constraint condition, the constraints are satisfied at a certain probability  1 q  , where q stand for a 

predetermined probability set by managers, denoting the acceptable level to violate the constraint (Sun et al., 
2013; Zhuang and Zeng, 2015). This constraint allows the spill of water conveyance. The water loss rate   of 
the constraints was treated as a normally distributed random parameter (   is the expectation and is the 
standard variation). The water loss rate was N (0.04, 0.062) in this study.  

(4) Nonnegative constraint: 
 

 0ijtx    [11] 

  
3 RESULTS AND DISCUSSIONS 

 
3.1 Establishment of joint probability distribution 
 For transferring water resource T and local surface water resource L, the marginal distributions of  TF t

and  LF l obeyed a Person type-III (P-III) distribution(Peng and Xu, 2010). For T and L, the parameters of the 

marginal distribution were estimated on the statistics reported in Table 2, and the distribution probability 
curves are shown in Figure 2. Based on the ML criterion (see Table 3), the Clayton copula function was 
chosen for synthetic multi-water resources during the MC process. The joint probability distribution of T and L 
is shown in Figure 3. A sensitivity analysis found that taking 200 samples from the fitted copula was sufficient 
for optimization. 
 

Table 2. Estimated parameters of P-III distribution for annual water resource series. 

Parameters Transferring water Local surface water 

0   4.5948 10.5018 

   0.7991 0.3491 

   8.8642 10.3115 

 
Table 3. Parameters and goodness-of-fit test of copulas. 

  Clayton Frank Gumbel 
Parameter 0.4548 2.9174 0.8571 ࣂ 
Likelihood -197.8271 -163.2077 -154.4219 
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Figure 2. Comparisons of the empirical and theoretical marginal distributions: (a) transferring water resource; 

(b) local surface water resource. 
 

 
Figure 3. Joint probability distribution of transferring and local surface water resources. 

 
3.2 Optimal water allocation  
 This model was used to research the optimal allocation of multi-water resources in the water-receiving 
area with a whole consideration of issues including growth, fairness and efficiency. The results showed that 
there will still be a degree of water shortage. In a water-receiving area, the water shortages and use of water 
resources can have a direct influence on the urban development. From the analysis and result of the multi-
water resources system, it is considered that the rate of relative scarcity of water (Wang, 2006) can be an 
powerful tool to reveal the severity of water resource shortages and competitive water use. The water scarcity 
ratio is defined as the following equation: 
 

 1SI

I

j ij
i

j
j

D x

D






  [12] 

 
where SI j is seen as the shortage index for water user j (municipal user when 1j  , industry user when 2j  , 

ecological user when 3j  , agricultural user when 4j  ). 
 
 
 
 
 

(b) 
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Table 4. The water scarcity ratio of water users under different conveyance loss. 
 Municipal Industry Ecology Agriculture 

No conveyance loss  0 0.0059 0.0332 0.0432 
q=10% 0 0.0065 0.0378 0.0483 
q=5% 0 0.0068 0.0421 0.0573 
q=1% 0 0.0148 0.0499 0.0735 

  
 It is obvious that water scarcity ratios of users increase given that violating probability decreases. This is 
because the CCP requires that the constraint should be satisfied with at least a probability level (1-q) when 
certain violating probability level is q. Higher violating probability represents relaxation of system constraint, 
and this can result in less water shortage. Taking agriculture water-using department as an example, the 
water scarcity ratios falls from 0.0735 to 0.0483 by violation probability from 1% to 10%. Hence, higher 
constraint violating probability leads to more water availability, correspondingly a higher water use efficiency 
and system cost. On the contrary, the optimistic managers would choose the higher violating probability to get 
lower water shortage and higher water use efficiency. 
 In addition, the water scarcity ratio of municipality is zero, which means the available water can meet the 
requirement of municipality. That is because the municipal allotment should be first guaranteed, regardless of 
available water levels. The water scarcity ratio of the others, however, is not zero, but shows variations 
between different users because of the cost of various water users. When q is 1%, the water scarcity ratios of 
industry, ecology and agriculture are 0.0148, 0.0499 and 0.0735 respectively, showing a trend of increase. 
High shortage mainly occurs for the agriculture because of the largest percentage of water demand and low 
benefit. Due to the large shortage of agriculture, it is necessary to determine the laws of the relationship 
between water ability and the loss in different combination of multi-water resources.  
 
3.3 Risk assessment curves for agricultural water  
 From these results, it can be concluded that the scale of the agricultural shortage is significantly 
correlated with various combination of water supply. For agricultural water shortage, its occurrences, change 
characteristics and possible causes should be closely concerned because of its multiple uncertainties. The 
traditional method is only dependent on extensive farmland and irrigation surveys, rather than agricultural 
water shortage assessment in terms of various probabilities of occurrence. The curves of agricultural water 
shortage under different conveyance loss are fitted by using logarithmic functions with correlation coefficients 
from 0.9306~0.9387 shown in Figure 4. 
 

 
Figure 4. Relationship curves under different conveyance loss between the combination frequency of multi-

water resources and agricultural water shortage. 
 
 From the three curves, we can infer that with the available water resources increasing, the water 
shortage of agriculture decrease. The lower combination frequency of multi-water resources, which means the 
more available water supply, the lower will be the shortage caused. At the same time, the high-frequency 
event will cause high shortage. Moreover, the figure also presents the trend of agricultural water shortage 
under different conveyance loss (different q). A conclusion could be made from comparing the water deficits in 
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three q levels: a greater water shortage would exist under lower q levels, while a smaller water shortage 
corresponded to high q levels. The constraint allowed the spillage of water during delivery in the model, and 
its acceptable level could be adjusted by managers. It can be explained that the relaxations (a higher q) of 
constraint would lead to raised available water resources and reduced water losses, correspondingly smaller 
water shortage. The laws from the three curves are almost the same with the objective facts, so the fitting 
curves can be used to analyze the impact of different combination of multi-water resources on the shortage of 
agriculture. In this way, different decision schemes would be obtained under different water availability levels 
and violating probabilities with focusing on extreme situation, in order to provide insights into agricultural 
shortage conditions and thus promote water-saving measures. 
 
3.4 Sensitivity analysis 
 In order to clarify the impact factors of water shortage, the study made the sequences of the importance 
of all water resources. From there, it produces a variance-based global sensitivity measure with dependent 
inputs(Anstett-Collin et al., 2014; Mara and Tarantola, 2012), linking uncertainty and sensitivity analyses. The 
sensitive analysis indicate that the sensitivity index of groundwater water supply is the greatest (0.42), 
followed by transferring water (0.37) and local surface water (0.20). This indicates that the municipality and 
production supplies are mainly from groundwater, and that the transferring water resource plays an important 
role. Meanwhile, the total surface water supply composed of transferring and local surface water is greater 
than the groundwater supply. These can therefore be concluded that the goal of reducing the groundwater 
exploitation has been gradually achieved, and the water supply structure has been optimized. 
 
4 CONCLUSIONS 
 This paper has presented a risk-based chance-constrained optimization approach for analyzing 
agricultural water and water resources management by integrating the copula method, MCS and multi-
objective optimization. Considering the dependence structure of transferring and local surface water 
resources, the copula-based MCS methodology provided more realistic samples for evaluating the 
combination of multi-water resources, which reserved the uncertainty during the optimization process. The 
results showed that the water scarcity ratio of agriculture is the highest, meaning that different combinations of 
multi-water resources have the greatest influence on the agriculture. The agricultural shortage risk 
assessment curves were fitted by using joint probability and the water shortage of agriculture under different 
conveyance loss. Results showed that the two water resources had a common influence on water shortage. 
For a constant q, an increased joint probability means an increased crisis of water shortage, and more water 
shortage amounts would exist under lower q levels. Using this approach to research the impact of multi-water 
resources supply on agricultural shortage risk assessment is feasible. Overall, this model can help to reflect 
the uncertainty of agricultural using water. The study emphasizes the importance to improve and update 
transferring and local surface water management and relevant countermeasures in order to ensure future 
water security. 
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