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ABSTRACT  
 
Water balance analysis showed that the intensity of water consumption in urban units was significantly higher 
than that in suburban areas. In this study, the city area is divided into different water consuming units based on 
the prototype observation of water consumption and the characteristics of the underlying surface of the city, and 
the mechanism of urban water consumption was analyzed. A mathematical model was built to simulate the 
water consumption processes in cities with complicated underlying surfaces. For example, the water 
consumption intensity (WCI) of each unit was calculated in Beijing city. Beijing’s urban water consumption 
intensity was 850 mm in 2014, which was verified by water balance analysis based on observation datasets. 
The breakdown results show that the WCI of residential buildings depend on the residents living and work habits. 
The WCI of municipal square and road is determined by precipitation characteristics and runoff coefficients of 
the underlying surface. The WCI of water and green land depends on temperature, solar radiation, precipitation 
and other meteorological factors like wind speed, humidity, etc. The amount of water consumption for one kind 
of urban unit is the product of WCI and area of the urban unit. In the study area, the amount water consumption 
of residential buildings is the largest contributor for the urban water consumption, followed by that of green land. 
In urban areas, residential buildings, roads and municipal squares greatly enhance the water consumption 
intensity, and their contributions to total amount water consumption are greater than that of green land and 
water. 
  
Keywords: Urban hydrology; water consumption; dualistic water cycle; mechanism model; evapotranspiration. 
 
 
1 INTRODUCTION  

There have been considerable urban developments in China and some other developing countries. As 
urbanization develops, urban hydrology process attains more and more concern. Comparing to natural surfaces, 
the urban surfaces change greatly, which result in large changes of hydrology process and energy balance 
(Collier, 2006). Urbanization has impact on hydrology process in many aspects, including energy budget (urban 
heat island, Gedzelman et al., 2003), water vapor variability (Champollion et al., 2009); precipitation changes 
(Rosenfeld, 2000), urban storm and flood (Jauregui & Romales, 1996), water supply and water resources 
consumption (Hof & Schmitt, 2011; Chen & Qian, 2006). Human activities also exert an impact on natural 
environment and urban microenvironment (Tian & Yang, 2011). 

The process of urban water cycling can be generalized as water supply, water use, water consumption, 
drainage, recycling etc. The amounts of water supply, water use, drainage and water recycling are easy to 
measure except for water consumption. In other words, the statistical data of these aspects can be obtained 
from related reports and documents. Generally, water consumption involves evapotranspiration, groundwater 
recharge and water delivered in products, among which the groundwater recharge can be estimated by the 
change of groundwater table, and the water delivered in products can be negligible due to its tiny amount, 
therefore urban evapotranspiration is a key problem in the urban water cycle research. The traditional 
evapotranspiration estimation methods mainly focus on uniform underlying surface, and have little knowledge 
of the heterogeneity of the urban surface. The remote sensing evapotranspiration model starts with estimating 
sensible heat and then calculating the latent heat based on the energy balance, which draw a conclusion that 
the evapotranspiration of urban area is smaller to that of forests or farmlands. Meanwhile, high 
evapotranspiration in urban area is worldwide prevailing. Columbia University carried on the Global Rural-Urban 
Mapping Project in 2005, and this research shows that urban area occupies 3% of the total land area while the 
quantity of urban water use accounts for one third of the total amount of water supply. 

In order to understand the high water-consumption of urban area, a mechanism model is needed. Liu et al. 
(2009) have put forward a framework to estimate regional evapotranspiration called objective ET calculation 
model. Based on the framework, a mechanism model of urban water consumption was built. The proposed 
model was used to estimate the evapotranspiration in Beijing.  
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2 PROJECT SITE 
The mathematic model was applied in Beijing. Beijing is one of the most affected cities suffering from water 

shortage in the world. In the top fifteen populous cities in the world, Beijing is the only one whose annual average 
precipitation is less than 600mm. The water resources per capita is about 100 m³ in Beijing in 2014, which is far 
below the standard quantity of water resources per capita, 1000 m³, defined by the United Nations (Zhang, 
2005). According to Beijing’s Water Resources Bulletin (2003 to 2014), the average water resources in Beijing 
is about 2.63 billion m³/a, with overland runoff of 0.9 billion m³/a and groundwater resources of 1.73 billion m³/a. 
With rapid growth in urbanization, the urban area of Beijing increased significantly. According to data from the 
Chinese City Construction Statistical Yearbook, the urban area of Beijing increased nearly by 3 times from 366 
km2 in 1980 to 1261 km2 in 2014, while the farming area decreased from 4130 km2 (in 1980) to 2317 km2 (in 
2014). There has also been a great increase in Beijing’s population from 9.04 million (in 1980) to 20.69 million 
(in 2014). 
 
2.1 Underlying Surface Types 

The terrain condition of Beijing is characterized in having a high elevation in the northwest and low elevation 
in the southeast, and the plain area in the southeast are surrounded by mountains on three sides. The land use 
of Beijing is shown in Figure 1, which is mapped based on the remote sensing images of Beijing in 2014. The 
underlying surface of mountain area mainly involves forests, shrub land, sparse woodland and grassland. The 
plain area is mainly covered by farmland and urban land, which are hardly influenced by human activities. The 
urban surface in the plain area includes roads, streets, rivers, lakes, and the building surface of both high and 
low density. Considering difference types of underlying surface, Beijing can be divided into a mountain zone of 
10019km2, and a plain zone of 6391km2. The plain zone is divided into two parts, the urban zone and the 
suburban zone, which are changing over time with average of 1241km2 and 5150km2 respectively. Table 1 
shows the area of different types of land use in Beijing in 2014. 

 

 
Figure 1. The Land Use of Beijing in 2014 

 

2.2 Data 
The data of this study consist of three kinds of dataset, which are the dataset of water, underlying surface, 

social / economic status. The dataset of water includes precipitation, water supply, drainage, etc., which were 
collected from the Beijing Water Resources Bulletin. In addition, the precipitation of divided zones was estimated 
based on the local precipitation contour map. The underlying surface data was obtained by interpreting the map 
of Beijing’s land use in 2014, which is shown in table 1. The social / economic data needed in this study is 
mainly population distribution and building density. It was obtained by sample survey and spatial interpolation. 
The other data including different area zones in Beijing, population, industrial output originate from the Beijing 
Statistical Yearbook and China City Construction Statistical Yearbook. 

 
 

The plain zone 

The mountain zone 
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Table 1. The area of different land use in Beijing (2014) 

Classification Index number Type of land use Area /hm2 

1 farmland 11 paddy fields 16026 
 12 dry farmland 347750 
2 woodland 21 forest 449763 
 22 shrub land 161336 
 23 sparse woodland 83445 
 24 slash, orchard etc. 32822 
3 grassland 31 high coverage grassland 88178 
 32 moderate coverage grassland 16009 
 33 low coverage grassland 6604 
4 wetland 41 river 10864 
 43 lake, reservoir 18809 
 46 shallows 6048 
5 habitation land 51 urban land (except roads/street) 224237 
 52 rural residential area 123908 
 53-1 industrial and mining area 16366 
 53-2 road/street 38672 
6 unused land 65 bare land 115 
 66 rocky area 49 

 
3 METHODOLOGY 

In order to calculate the water consumption in urban area, this paper proposed a framework to integrate 
the soil moisture model (Pei et al., 2006), model for urban water dissipation (Zhou et al., 2017), distributed 
hydrology model, remote sensing methods and water budget method (Figure 2). The calculation of regional 
evapotranspiration (ET) includes two process of “from top to bottom, from bottom to top”. “From top to bottom” 
means to calculate the regional ET by water budget method. The input data includes precipitation, runoff, water 
supply, drainage, and groundwater recharge. The output is the regional ET, which could be calculated by 
equation of water budget illustrated in left of figure 2. Most of the data input in this step was measured, so the 
output of this step could be used to calibrate and validate the models on the right of figure 2. “From bottom to 
top” is the process to calculate the ET for different kinds of land use through the sub-item simulation models. 
 
 

 
Figure 2. Framework of water consumption calculation method 

 
Among the framework, the most important is to calculate the ET of habitation land, which includes the 

urban land, rural residential area, industrial/mining area and road/street. The parameters that influence ET of 
habitation land are population distribution, building density, types of buildings, economic development level, etc. 
In order to analyze the characteristics and intensity of water consumption in different types of habitation land, 
several types of buildings in Beijing were investigated. There is a total of 70 buildings that have been sampled, 
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of which 47 were residential buildings, 9 were office buildings, 6 were school buildings, and 8 were restaurants. 
All samples were located in independent locations with separate water supplies and in different drainage 
systems (Zhou et al., 2017). The sampled buildings covered an area of 712,000 m2 and hosted a gross 
population of 64,886. This large sample size was chosen to ensure that the results of the study would be the 
representative of building’s water consumption features. In addition, the ET on road /street was estimated based 
on precipitation dataset and the observed runoff on typical road. Table 2 shows the results of the sampling 
survey and the typical experiment. The results were used as key parameters to calculate the ET of habitation 
land. For example, the water consumption intensity on building’s floor is 170.9 mm, if the building has 10 floors, 
the water consumption intensity per unit projected area would be 1709 mm. The higher the building, the more 
water it would consume, which is the reason that the habitation land usually has high water consumption 
intensity. 

 
Table 2. The water consumption parameters in habitation land of Beijing 

Index Type of surface 
Water consumption intensity /mm 

(water consumption / surface area) Main water consumption behavior 

1 Buildings 170.9 toilet flushing, washing, cooking, air humidification 

2 road / street 189.9 evapotranspiration, wheel atomization, road spraying 

 
4 RESULTS AND DISCUSSIONS 

The proposed model was applied to estimate the evapotranspiration of different zones from 2003 to 2014 
in Beijing. The results are shown in table 3. The average evapotranspiration in Beijing from 2003 to 2014 is 
501mm, which is very close to the average precipitation of 514 mm. The results show that the potential water 
resources throughout Beijing have been greatly exploited; it also illustrates that Beijing makes limited 
contribution on water resources for the Haihe River Basin.  

 
Table 3. Evapotranspiration of different underlying zones in Beijing (mm) 

Year Precipitation 
Evapotranspiration 

Beijing 
average 

Mountain 
Zone 

Plain 
Zone 

Urban 
Zone 

Suburban 
Zone 

2014 439 461 403 550 850 478 
2013 501 496 452 565 890 489 
2012 708 604 551 674 1120 572 
2011 552 521 480 581 927 502 
2010 524 518 478 568 858 500 
2009 448 462 406 554 812 491 
2008 638 597 548 658 1010 572 
2007 449 472 403 565 877 486 
2006 448 471 421 543 847 470 
2005 468 464 426 541 862 464 
2004 539 512 490 540 859 472 
2003 453 438 408 480 846 439 

Average 514 501 456 568 897 495 

 
The urban evapotranspiration is 897 mm/a, which has the highest evapotranspiration amongst all zones. 

In recent years, such as year 2008, 2011, and 2012, the evapotranspiration has exceeded 900 mm/a, which is 
near to the local water surface evaporation. This seemed to have violated the principles of conventional 
evaporation rates. The main reasons for this extraordinary phenomenon are the local high-density buildings and 
intensive human activities. On one hand, high-rise buildings form porous sponge-like structures, leading to 
increased evapotranspiration; on the other hand, urban heat islands effect, the car’s wheel atomization effect 
and other human activities also contributed to the evapotranspiration enhancement. The adequate water supply 
will lead to an increase in the amount of evapotranspiration in urban area. For instance, a phenomenon called 
“fogging effect of car’s wheel” on road surface will accelerate street surface evapotranspiration rate when it is 
raining. A lot of water-vapor increases when the car’s wheels rotate on the road, resulting in a quick dry up of 
the carriageway after raining. The changing trends of evapotranspiration in different zones were analyzed based 
on the observed precipitation and simulated evapotranspiration. Since evapotranspiration and precipitation have 
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a close relationship, this paper carried out regression analysis of the evapotranspiration and precipitation in 
different zones, as shown in Figure 3. 

 

 
Figure 3. Regression analysis of evapotranspiration and precipitation of different zones 

 
It can be seen in Figure 3 that ET in urban zone is significantly higher than ET in suburban zone, and even 

higher than the precipitation (above the "45-degree diagonal line"). There is a visible difference between 
evapotranspiration and precipitation. The ET in mountain zone is smaller than precipitation; while the ET in plain 
zone is higher than precipitation except for 2012, in which the precipitation is very high (708 mm). The plain 
zone evapotranspiration is slightly higher than precipitation, which is mainly because evapotranspiration is much 
higher than precipitation in the urban zone. The ET in urban zone is about 400mm higher than the precipitation. 

This paper carried out linear regression analysis of evapotranspiration and precipitation in different 
underlying zones in Beijing. The square of correlation coefficient for Beijing-average and mountain zone is 
above 0.90, while the square of correlation coefficient for plain zone is 0.75. It can be explained by the fact that 
mountain zone is less affected by human activities, so evapotranspiration receives greater impact from 
precipitation. Whereas for plain areas, where evapotranspiration is more greatly influenced by human activities, 
and thus the correlation coefficient is smaller. 

Figure 4 shows the city evapotranspiration volatility, and there is a small peak in 2008 and 2012. In the 
research period, the trends of evapotranspiration and precipitation are similar to each other. The precipitation 
of 2008 and 2012 are 638mm and 708mm respectively, far higher than the average annual precipitation of 514 
mm in the recent twelve years, thus, the evapotranspiration in these two years were slightly higher than the 
other years. The figure shows that the change of evapotranspiration in plain zone in the past dozen years is 
small; while the mountainous and suburban evapotranspiration change with precipitation to a slightly larger 
extend. Further analyzing on Beijing’s overall composition of evapotranspiration, it could be found that the 
mountainous area (covers 61% of the total area) has relative low evapotranspiration (55%), and urban zone 
area (8%) has relative high evapotranspiration proportion (14%), which indicates that the urban water 
consumption intensity is greater than that of other underlying surface types. 

The ET in urban area can be classified into four categories: ET of buildings, ET of roads, ET of green land, 
ET of wetland (rivers and lakes). The average ET of buildings, roads, green land, wetland are 529 million m3; 
104 million m3, 431 million m3, and 49 million m3, with the proportion of 47.6%, 9.3%, 38.7%, 4.4% respectively. 
In the urban area of Beijing, the residential building is the largest contributor for the urban water consumption, 
following by that of green land. 
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Figure 4. Change of evapotranspiration of different zones in Beijing 

 
 
5 CONCLUSIONS 

The urban area is very active for water use and consumption. This paper focused on the simulation of 
water dissipation process in urban area, and proposed a framework to calculate and validate the water 
consumption in regional scale. The proposed mathematical model was applied in Beijing and the water 
consumption in mountain zone, plain zone, urban zone and suburban zone from 2003 to 2014 were calculated. 
The results show that evapotranspiration vary widely in different zones of the same period in Beijing. The dozen-
year average evapotranspiration of Beijing is 501mm/a, from 2003 to 2014. With high-density construction and 
human activities gathering in urban zone, the urban evapotranspiration is the highest, with an average of 897 
mm/a, a maximum of 2012, reaching 1120mm/a; mountainous evapotranspiration is the minimum, with an 
average of 456mm/a; suburban evapotranspiration is the medium, with an average of 495 mm/a. 

The relationship between evapotranspiration and precipitation varies according to different zones. Urban 
evapotranspiration is significantly greater than precipitation, and even higher than the local water evaporation 
for a few years. Plain evapotranspiration is slightly larger than precipitation except for year 2012, which had 
extremely high precipitation. Urban and suburban evapotranspiration in the plain zone are less affected by 
changes of precipitation, while the mountainous evapotranspiration is most influenced by precipitation. The 
evapotranspiration and precipitation correlation coefficient of Beijing is 0.94, that of mountainous zone is 0.91, 
and that of the plains zone is 0.75. The intensity of water consumption in urban area is about 400 mm higher 
than the precipitation. The largest contributor for the urban water consumption is residential buildings, which 
occupies 47.6% of the total evapotranspiration in the urban area of Beijing. 
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ABSTRACT 
 
Flood events in urbanized areas are usually caused by localized rainfall events with very high intensity that 
occur in catchments located at the upstream of the city. The typical model chain for forecasting this type of 
event is a hydrological model that generates input for a two-dimensional hydraulic model. However, in recent 
years, the depth-averaged two-dimensional shallow water equations are applied to compute rainfall-runoff in 
natural catchments as well as inundation areas in city environment. The application is limited by computational 
constraints, which resulted from the high mesh resolution required to account for microtopography in natural 
and buildings in urban catchments. In this context, coarse grid approaches aim to reduce computational cost 
by enabling simulations on coarser meshes and introducing subgrid treatments to recover some of the 
information at subgrid-scale. This contribution presents a novel model chain that comprises two coarse grid 
approaches with specialized application domains: (1) friction law-based coarse grid approach and (2) 
anisotropic porosity-based coarse grid approach. The hydrological model that is usually used for these type of 
predictions was replaced by a shallow water model with a specialized friction law to account for 
microtopography. The urban flood inundation model was sped up by introducing anisotropic porosity terms to 
account for buildings. The model chain was applied to predict rainfall-runoff in an idealized city, based on a 
real rainfall event in a real natural catchment. An averaged behavior of a high-resolution model chain can be 
obtained with significantly lower computational cost such that the simulations run on average about 100 times 
faster than the high-resolution counterpart. 
 
Keywords: Shallow water model; porosity; coarse grid approach; urban catchment; friction law.  
 
 
1 INTRODUCTION  
 In most forecasting systems, a model chain that consists of a hydrological model and a two-dimensional 
hydraulic model is used to predict inundated areas for a rainfall event. Here, the hydrological model calculates 
a discharge at the outlet of the natural catchment that is then down-scaled and used as a boundary condition 
to drive the hydraulic model that computes inundation areas in city environment.  
 Using a hydraulic model instead of the hydrological model is currently hardly feasible due to high 
computational cost. In addition, the computational cost of conventional hydraulic finite-element and finite-
volume codes typically prevents model discretization at a resolution that is achievable with airborne LIDAR 
technology (McMillan & Brasington, 2007). The computational constraint on the discretization scale can be 
illustrated by the fact that the computational cost of an explicit finite-volume code is quantified by Kim et al. 
(2014) as inversely proportional to the third power of the cell size. Codes that operate on the high-resolution 
data set scale to simulate flooding of large urban catchments are usually utilizing high-performance computing 
technology on supercomputers to achieve feasible computation time, e.g. (Hinkelmann, 2005; Smith and 
Liang, 2013; Lacasta et al., 2014; Abily et al., 2016). 
 Besides from high-performance computing, the issue can be approached in two ways, either by 
simplifying the mathematical model (McMillan & Brasington, 2007; Chen et al., 2012a; Chen et al., 2012b; 
Jahanbazi et al., 2017), or by reducing the cell number by means of a subgrid parameterization of the building 
or microtopography effects on the flow. Figure 1 shows an overview of the motivation for using coarse grid 
approaches in hydro- and environmental system modeling.  
 A very straight-forward subgrid approach is to artificially increase the roughness parameter in the shallow 
water model to account for head loss due to unresolved obstacles. This approach has been investigated for 
urban flood modeling in (Néelz and Pender, 2007), wherein it was noted that this approach may lead to errors 
in the modeled flow routes and in (Liang et al., 2007), wherein it was reported that finding suitable values for 
the roughness parameters was rather non-intuitive. For applications in natural catchments, Razafison et al. 
(2012) derived a friction approach to account for ridges and furrows and Jain & Kothyari (2004) presented a 
friction approach that accounts for vegetation. In this study, we used the friction law derived in (Özgen et al., 
2015) to account for unresolved microtopography to enable an efficient shallow water equations-based 
computation of rainfall-runoff in natural catchments that replaces the hydrological model in the aforementioned 
model chain.  
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Figure 1. Motivation for using coarse grid methods 

 
 Another coarse grid approach is based on a porosity term. Essentially, in this approach the computational 
cell with unresolved buildings inside of it, is treated as a porous medium. Thus, a porosity term is introduced 
into the shallow water equations. Following the pioneering work by Defina (2000) and Hervouet et al. (2000), 
Guinot & Soares-Frazão (2006) and Soares-Frazão et al. (2008) presented the so-called isotropic porosity 
shallow water equations and provided a Godunov-type finite-volume method to solve them. The isotropic 
porosity shallow water equations were derived using a representative elementary area (REA) assumption. 
Guinot (2012) noted that the existence of an REA in urbanized areas is debatable. Assuming that a REA 
exists, Guinot (2012) then showed that the scale of the assumed REA exceeded the mesh resolution for 
several orders of magnitudes, but pointed out that from a numerical point of view, it is safe to choose a mesh 
resolution below the REA scale, as the numerical convergence requires the cell size to become infinitely 
small. We note that from an application point of view, the discussions about the REA scale are unimportant as 
satisfying results are obtained by using the isotropic porosity model (Guinot & Soares-Frazão, 2006; Soares-
Frazão et al., 2008).  
 The anisotropic porosity shallow water equations have been derived in (Sanders et al., 2008), to 
overcome a limitation of the isotropic porosity shallow water model, that is, the impossibility for the isotropic 
porosity shallow water model to account for directional effects induced by local anisotropic structures. Sanders 
et al. (2008) derived the equations in integral form to remove the constraint of isotropy imposed by the REA 
assumption. In the anisotropic porosity model by Sanders et al. (2008), directionality was accounted for by 
means of additional porosity terms at the edges of the computational cell. A similar approach was later 
adopted in Chen et al. (2012a), where edge conveyance coefficients were defined at each edge. As pointed 
out by many researchers, e.g. Sanders et al., (2008), Guinot (2012) and Özgen et al. (2016a), the integral 
approach resulted in porosity terms which were heavily mesh-dependent. Currently, there is no treatment 
available to overcome the mesh-dependency of the anisotropic porosity shallow water model, although 
research in this direction is currently being carried out at the University of Liege (M. Bruwier, private 
communication). In this work, the anisotropic porosity shallow water equations, solved by the numerical model 
presented in Özgen et al. (2016a), were used to predict inundation heights in urban environment.  
 In this study, the anisotropic porosity shallow water model for urban environment was coupled with the 
friction-based coarse grid approach for natural catchments to obtain a novel model chain that can be applied 
for the fast prediction of urban runoff. 
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2 GOVERNING EQUATIONS 
 In this section, we give an overview of the mathematical model concepts that are used. For the sake of 
brevity, we omitted the derivation of the equations. The readers are referred to Özgen et al. (2015) and Özgen 
et al. (2016b) for a detailed discussion of the friction law-based coarse grid approach and the anisotropic 
porosity shallow water equations, respectively. We further note that in the following, turbulence and molecular 
viscosity as well as other momentum diffusion terms were neglected. This has the advantage that the 
governing equations become hyperbolic instead of being of mixed type. The physical justification is that in 
very shallow flows such as rainfall-runoff, turbulence is mainly produced by bed friction (Cea et al., 2007). 
 
2.1 Classical shallow water equations with specialized friction law 
 The classical shallow water equations are written in differential form as 
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where t is time, x and y denote the axes of the Cartesian coordinate system, q is the vector of conserved 
variables, f and g are the flux vectors in x- and y-direction, respectively, and s is the source term vector. The 
flux and storage vectors in Eq. [1] are defined as 
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with h standing for water depth, u and v standing for velocity in x- and y-direction, respectively, and g standing 
for the gravitational acceleration, usually set to 9.81 m/s2. The source term vector is defined as  
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Here, i is the rainfall intensity, z is the bed elevation and fx and fy are the friction source terms in x- and y-
direction, respectively. The definition of the friction source terms is according to the friction law in Özgen et al. 
(2015): 
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where v = [ u, v ]T is the vector of velocity and | . | denotes the Euclidian norm of the vector, n is Manning’s 
roughness coefficient and K is a geometrical parameter defined as 
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with α0 and α1 being calibration parameters and Λ being the inundation ratio (Lawrence, 1997): 
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Here, s0 is the bottom slope and k is the characteristic roughness height, which is set equal to the standard 
deviation of the subgrid-scale structure. While in Özgen et al. (2015), a spatially uniform distribution of the 
roughness height was used, Özgen et al. (2016c) examined whether calculating the roughness height 
individually in each cell improves the model accuracy and report no significant improvement in natural 
catchments. 
 
2.2 Anisotropic porosity-based shallow water equations 
 The anisotropic porosity shallow water equations are written in an integral-differential form as 

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

3900 ©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print)



  
          

  

 

																																															න ݅	
ܙ߲
ݐ߲
݀Ω  ර ݎ݀	ܖ	۴	݅ ൌ න Ω݀	ܛ	݅

	

ஐ

,

	

డஐ

	

ஐ

																																ሾ7ሿ 

 
where i(x,y) is a phase function that returns 1 if (x,y) corresponds to a void or 0 if (x,y) corresponds to an 
obstruction. We note that F n = f nx + g ny, and that the flux and storage vectors correspond to Eq. [2], and the 
source term vector contains an additional source term that models the fluid-building interaction at subgrid 
scale. This reads 
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where the term with p now corresponds to the source term of Eq. [3] and the second term on the right-hand 
side is the additional source term, calculated by a path integral along the fluid-building interface with m being 
the unit normal vector pointing outside of the fluid phase. The third term is a head loss term calculated via a 
drag force formulation with c being the drag force coefficient. A finite-volume type discretization of the 
equation then yields: 
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where κ represents an implicit treatment of friction and drag source terms (Bussing & Murman, 1988), ϕ is the 
cell porosity, ψ is the edge porosity, n stands for the time level and the choice of n* determines the time-
stepping method. If n*=n, the method corresponds to an explicit forward Euler time-stepping, if n*=n+1/2, the 
method corresponds to a two-step Runge-Kutta scheme. 
 
3 NUMERICAL METHOD 
 The governing equations were solved in integral-differential form (Eq. [7]) with a cell-centered Godunov-
type finite-volume method. Second order accuracy was achieved by means of a linear MUSCL reconstruction. 
Time was discretized by a second order accurate two-step TVD Runge-Kutta scheme, cf. Eq. [9]. More details 
about the numerical method can be found in Özgen et al. (2016a). 
 
4 COMPUTATIONAL EXAMPLE 
 The two presented coarse grid approaches were coupled to obtain a model chain that is applied to model 
runoff in an urbanized environment caused by a heavy rainfall event in a natural catchment located at the 
upstream of the city. We considered an idealized city that is located at the outlet of the subcatchment and 
impose the discharge of the subcatchment as an inflow boundary condition of the model of the city. While 
there was measurement data available for the discharge of the subcatchment, no measurement data was 
available for the city.  
 
4.1 Friction law-based coarse grid approach for rainfall-runoff in natural catchment 
  
4.1.1 Initial and boundary conditions 
 The natural catchment is a real world subcatchment of the Heumöser slope in Vorarlberg, Austria, that 
spans about 100000 m2. Bottom elevation was provided in 1 m by 1 m resolution by the Austrian Torrent and 
Avalanche Control department, cf. Figure 2 (left). The whole domain was initially dry. Discharge was 
generated by a spatially uniform rainfall according to a time series measured in July 2008 with a temporal 
resolution of 10 min, cf. Figure 2 (right). Here, the rainfall intensity was multiplied with the runoff coefficient 
ψ=0.3 to account for infiltration (Simons et al., 2014). In addition, following Simons et al. (2014), the interflow 
component was modeled by means of a linear storage model, with a storage coefficient of K=6 h, and added 
to the overland flow to obtain the total discharge at the outlet. All boundaries were open boundaries. The 
domain was discretized with a quadratic grid with cell size of 10 m. The model was calibrated as reported in 
(Özgen et al., 2015) with n = 0.035sm-1/3, α0 = 0.3 and α1 = 0.87. The simulation run for 120 h, i.e. 5 days.  
 
4.1.2 Results 
 Model results for the discharge at the outlet of the domain were compared with field measurement data 
and a high-resolution simulation (mesh resolution 1 m) by Simons et al. (2014) in Figure 3. 
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Figure 2. Catchment topography with position of measurement weir at the outlet (left); intensity of the rainfall 

event (right) 
 

Both the high-resolution model and the coarse grid model overshot the measurement data at the beginning of 
the simulation. As discussed in (Cea et al., 2010), this might be due to shear effects on the thin water film in 
the real world that cannot be reproduced with the mathematical model of the shallow water equations. After t = 
20 h, the deviation between the models and the measurement data diminished. The third and fourth peaks at 
about t = 40 h and t = 60 h, respectively, were captured fairly accurately. 
 The friction-law based coarse grid approach reduced the computational cost such that the simulation 
results were obtained 350 times faster than the high-resolution simulation of Simons et al. (2014). 
 

 
Figure 3. Comparison of coarse grid model results with measurement data and a high-resolution simulation 

by Simons et al. (2014) 
  
4.2 Anisotropic porosity shallow water model for urban environment 
 We defined an idealized city geometry to complete the model chain. We assumed that the city, that 
represents the real city of Ebnit, Austria, in a very simplified way, is directly located at the outlet of the natural 
catchment, such that we can apply the model result obtained in the simulation above as an inflow boundary 
condition to drive the anisotropic urban flood model. In a second simulation run, we artificially increased the 
discharge at the boundary to produce a more hazardous flood event. 
 

4.2.1 Initial and boundary conditions 
 The domain was a 500 m by 300 m large urban basin with flat bed, wherein the only topographical 
features were the buildings inside the domain, cf. Figure 4 (top). We constructed a building block with 
elements that were rectangles with dimensions 20 m by 30 m. Outside of the block, we positioned a C-shaped 
building that represented an important building with a high damage potential, e.g. school or university. We 
were interested in the arrival time of the flood wave and the resulting water depth at this location. Thus, a 
gauge was positioned at the front of this building. The domain was initially dry, the discharge calculated by the 
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previous model run was imposed at a 25 m wide inlet at the west boundary of the domain that shall represent 
a breach in the dam that protects the city. All other boundaries were open boundaries.  
 In Figure 4 (bottom), the coarse mesh used by the anisotropic porosity model is shown. Buildings were 
plotted only for illustration purposes and were actually accounted for by means of the porosity terms. We note 
that the mesh was constructed such that the outline of the building block aligns with cell edges. This 
discretization significantly enhanced the quality of the results (Özgen et al., in preparation). 
 The high-resolution mesh consisted of 8222 triangular cells with element size ranging between 10 m and 
5 m, and the coarse-resolution mesh consisted of 698 triangular cells with cell size of 25 m. All meshes were 
generated with the software Gmsh (Geuzaine and Remacle, 2009). 
 

   
Figure 4. High-resolution mesh, building configuration and position of gauges and the inlet (left); coarse 
resolution mesh for the anisotropic porosity model with buildings plotted for illustration purposes (right) 

 
4.2.2 Results 
 Model results for both the high resolution simulation and the anisotropic porosity approach are shown in 
Figure 5. The overall dynamics of the flood wave was captured well by the anisotropic porosity model. The 
hydrograph consisted of four peaks that corresponded to the peaks in the inflow (cf. Figure 3). For both 
models, the runoff arrived at gauge 1 (highest damage potential) at about t = 20 h, while gauge 2 at city center 
was inundated at about t = 15 h. We observed that gauge 3 was influenced more by fluctuations in the inflow 
than gauge 2 and gauge 3. The maximum water depth was measured at gauge 3 at about 62 h, which 
corresponded to the maximum peak in the inflow data. In comparison to the inflow hydrograph, the results at 
the gauges were damped and temporally delayed. This behavior was captured by both models, although we 
see that the maximum water depth in the anisotropic porosity approach results (about 1.6 cm) was smaller 
than in the high resolution results (about 1.8 cm).  
 The results of both model runs were compared in Figure 6. In the beginning, the results of the anisotropic 
porosity approach overall undershot the hydrograph produced by the high resolution model. In the late stage 
of the simulation, when the inflow began to decline (t = 80 h), the anisotropic porosity model results overshot 
the high resolution hydrograph. We reported an average deviation of about 3 mm in water depth at all gauges 
but an exact prediction of the arrival times of the runoff waved in all cases. 
 The forecast of this model chain predicted that fortunately the rainfall event in the natural catchment is not 
heavy enough to cause substantial damage in the city. The maximum water depth we observed was about 2 
cm and located at the city border. The model chain was able to reproduce an averaged behavior of the high 
resolution simulation and was about 100 times faster than its high-resolution counterpart. 
 For illustration purposes, we artificially increased the discharge at the inlet boundary by factor 100. 
Results for the increased discharge are shown in Figure 7. We observed that the water level at all gauges 
increased significantly and the arrival time of the flood wave was significantly shorter. At gauge 3, a maximum 
water level of about 1.6 m at t=60 h was predicted by the high-resolution model (Figure 7 (top)) which was 
accurately captured by the anisotropic porosity shallow water model as well (Figure 7 (bottom)). As the flood 
wave propagated through the city environment, the amplitude of the water level was damped such that at 
gauge 2, the maximum water level calculated by the high-resolution model was about 0.8 m at about t=60 h. 
Here, the anisotropic porosity model underestimated the water level and yielded a maximum value of about 
0.75 m. Finally, at gauge 1, which is located in the area with high damage potential, the anisotropic porosity 
model slightly overestimated the maximum water level. 
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Figure 5. Model results for the high-resolution simulation (top) and the anisotropic porosity approach (bottom) 
 

 
Figure 6. Comparison of high-resolution model results (HR) with anisotropic porosity model results (AP) at 

gauges 3 (top), 2 (center) and 1 (bottom) 
 
 Overall, the dynamic of the flood was reproduced accurately by the anisotropic porosity model. Figure 8 
shows a comparison of the model results per gauge where the aforementioned discussions can be observed 
as well. Figure 9 shows water levels plotted at different time steps and good agreement between both models 
was observed. In both cases, the simulation with the anisotropic porosity model ran about 100 times faster. 
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Figure 7. Model results for case with artificially increased discharge for the high-resolution simulation (top) 

and the anisotropic porosity approach (bottom) 
 

 
Figure 8. Comparison of high-resolution model results (HR) with anisotropic porosity model results (AP) at 

gauges 3 (top), 2 (center) and 1 (bottom) for case with artificially increased discharge 
 
5 CONCLUSIONS 
 We presented and coupled two coarse-grid approaches, i.e. modified friction-law approach and 
anisotropic porosity approach, for application in urban runoff and urban flood modeling. The novelty of the 
presented approach is that the model chain contains two hydraulic models instead of the more common model 
chain hydrological model coupled with hydraulic model.  
 As a proof of concept, we simulated runoff and inundation in an idealized city using the suggested model 
chain. Model results were promising and indicated that this approach might indeed be used to forecast flood 
arrival times and flood inundation areas. The decrease in computational cost enables model results to be 
obtained in feasible time spans on a personal computer. On average, the models ran about two orders of 
magnitude faster than their high-resolution counterparts.  
 Future research may focus on studying the presented model approaches at even larger scales, e.g. large 
natural catchments and cities. 
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Figure 9. Water level plotted at different time steps for the artificially increased discharge for high-resolution 

model (left) and anisotropic porosity model (right) 
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ABSTRACT 
 
The present study proposed a decision support tool (SDExRAIN) for constructing the rainfall intensity-
duration-frequency (IDF) relations at a given site in the context of climate change. More specifically, the 
SDExRAIN consisted of two components: (i) a spatial statistical downscaling model to describe the linkage 
between large-scale global climate variables and daily annual maximum rainfalls at a given site; and (ii) a 
temporal statistical downscaling model to describe the relations between daily and sub-daily annual maximum 
rainfalls. Consequently, if the linkage between the large-scale climate variability to the historical observations 
of the extreme rainfall processes at a local site could be established, then the projected change of climate 
conditions provided by a GCM could be used to predict the resulting impact on the extreme rainfalls at the 
location of interest. The feasibility and accuracy of this tool was assessed based on the NCEP re-analysis 
data, the climate simulation outputs from two GCMs (the Canadian GCM3 and the UK HadCM3), and 
observed daily precipitation data available at two raingages with completely different climatic conditions: Seoul 
station in South Korea and Dorval Airport station in Canada. Results of this assessment have indicated that it 
is feasible to use the SDExRAIN for accurately describing the relations between climate predictors provided 
by GCMs under different climate change scenarios and daily and sub-daily annual maximum rainfalls at a 
given site. Therefore, the proposed decision support tool can be used for assessing the climate change impact 
on extreme rainfalls at a given location of interest. 

 
Keywords: Design rainfall estimation; hydrologic frequency analysis; downscaling methods; climate change; urban   

hydraulic structure design. 
 
 

1 INTRODUCTION 
 In recent years, climate change has been recognized as having a profound impact on extreme weather 
events. Many studies have been carried out to investigate this impact using outputs from Global Climate 
Models (GCMs) or Regional Climate Models (RCMs) and downscaling methods (Nguyen et al., 2006; Nguyen 
and Nguyen, 2008; Willems et al., 2012). The particular importance for water infrastructure design in small 
urban watersheds are those downscaling procedures dealing with the linkage of the large-scale climate 
variability to the historical observations of the sub-daily rainfall extremes at a local site (Nguyen et al., 2007; 
Arnbjerg-Nielsen et al., 2013). If this linkage could be established, then the projected change of climate 
conditions given by a GCM or RCM could be used to predict the resulting change of the local extreme 
precipitations and the corresponding urban runoff characteristics. Hence, in this study a decision support tool 
for statistical downscaling of extreme rainfall processes (hereafter called SDExRain) was developed to assess 
the climate change impact on the extreme rainfalls at a given location. 
 More specifically, the proposed tool SDExRain consisted of two components: (i) a spatial statistical 
downscaling model to describe the linkage between global climate variables and daily annual maximum 
rainfalls at a given site (Yeo and Nguyen, 2013); and (ii) a temporal statistical downscaling model to describe 
the relations between daily and sub-daily annual maximum rainfalls (Nguyen et al., 2002; Nguyen et al., 
2007). Consequently, if the linkage between the large-scale climate variability to the historical observations of 
the extreme rainfall processes at a local site could be established, then the projected change of climate 
conditions provided by a GCM could be used to predict the resulting impact of the selected extreme rainfall 
variables.  
 The feasibility and accuracy of the SDExRain were assessed based on the NCEP re-analysis and 
observed daily precipitation data available at two raingages with completely different climatic conditions: Seoul 
station in South Korea and Dorval Airport station in Quebec (Canada). Results of this assessment have 
indicated that it is feasible to use this tool for accurately describing the relations between climate predictors 
provided by GCMs under different climate change scenarios and daily and sub-daily annual maximum rainfalls 
at a given site. Therefore, the proposed decision support tool can be used for assessing the climate change 
impacts on extreme rainfalls at a given location of interest. 
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2 SDEXRAIN: A DECISION SUPPORT TOOL FOR CLIMATE CHANGE IMPACT ASSESSMENT OF 
EXTREME RAINFALL PROCESSES 

 As mentioned in the previous section, the proposed decision support tool SDExRain was based on a 
combination of two statistical downscaling procedures: (1) a spatial downscaling method for linking the daily 
precipitation process at a local site to large-scale atmospheric variables given by a GCM under different 
climate change scenarios using the SDRain model (Yeo and Nguyen, 2013); and (2) a temporal downscaling 
approach for linking sub-daily annual maximum precipitations (AMPs) from daily AMP using the scaling-GEV 
method (Nguyen et al., 2002). More specifically, this integrated extreme rainfall modeling tool in the context of 
climate change can be used for the construction of the Intensity-Duration-Frequency (IDF) relations of 
extreme rainfalls at a given location. Hence, it can be used to assess the regional climate change impacts on 
the extreme rainfalls at a given site of interest.  
 
2.1 A Statistical Model for Spatial Downscaling of Daily Precipitation Process (SDRain) 

The proposed SDRain model for modeling the daily precipitation process consists of two components: 
the modeling of daily precipitation occurrences and the modeling of daily precipitation amounts. Daily time 
series of precipitation occurrence is defined by two values (Oi = 0 if dry, Oi = 1 if wet). The daily probability 

( i ) of non-zero precipitation for a day ݅ is formulated as follows:   

 

 ݈݊ ൬
ߨ

1 െ ߨ
൰ ൌ ܽ  ܽଵ ଵܺ  ܽଶܺଶ ⋯ ܽܺ [1] 

 
in which ܺ, j = 1, 2, …, m, are the significant large-scale climate predictors, and the ܽ’s are the regression 
parameters. A uniformly distributed random number ri (0 ≤ ri ≤1) is used to determine whether it is a wet or dry 
day. In addition, similar to the SDSM method (Wilby et al., 2002), the relationship between the local daily 
precipitation amount (ܴ) and the large-scale climate predictors ( ܺ’s ) is described by the following nonlinear 
expression: 
 
 ܴ ൌ ሺܾݔ݁  ܾଵ ଵܺ  ܾଶܺଶ  ⋯ ܾܺ  ܧܵ ൈ  ሻ [2]ߜ
 
in which b’s are the regression parameters, and SE is the standard error in non-linear regression model, and 
δi is a normal distributed random number with mean of 0 and standard deviation of Variance Inflation Factor 
(VIF). The VIF term is used to increase the accuracy in representing the variance of the observed daily 
precipitation amounts and will be empirically determined using the available data.  
 The daily annual maximum precipitations (AMPs) are extracted from the downscaled daily precipitation 
series given by the SDRain for different GCM-based climate scenarios. However, it is expected that these 
downscaled annual maximum precipitations are not comparable to the observed extreme values. Hence, a 
bias-correction procedure is required to improve the accuracy of the downscaled AMPs at a given site. The 
proposed procedure is described in the following (Nguyen et al., 2007).  
 Let 

ఛݕ  ൌ ఛෝݕ  ݁ఛ [3] 

  
in which ݕఛ is the adjusted daily AM precipitation at a probability level ߬, ݕఛෝ 	 is the corresponding GCM-SDRain 
estimated daily AMP, and ݁ఛ is the residual associated with ݕఛ . This residual is modelled by the second order 
polynomial regression as follows: 
 

 ݁ఛ ൌ 	݉  ݉ଵݕොఛ  ݉ଶݕොఛଶ  ߳ [4] 

 
where m0, m1, and m2  are regression parameters, ݕොఛ is the estimated AMP, and ߳ is the modelling error term. 
 
2.2 A Statistical Model for Temporal Downscaling of Sub-Daily Precipitation Processes (SDExtreme) 
 The GEV distribution has been commonly used to describe the probability distribution of AMPs and for 
the construction of the IDF curves (Schaefer, 1990). The cumulative distribution function, F(x), of the GEV 
distribution is 
 

ሻݔሺܨ																																																																			 ൌ ݔ݁ ቂെቀ1 െ
ሺ௫ିకሻభ/ഉ

ఈ
ቁቃ		ሺߢ ് 0ሻ                                              [5] 

 
in which ߦ,  are the location, scale, and shape parameter, respectively. The non-central moment ߢ and ,ߙ
(NCM) method can be used for estimation the GEV parameters in consideration of the scaling property of 
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these NCMs with the rainfall durations. The k-th order of NCM, ߤ, of the GEV distribution can be expressed 
as 
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in which Γሺ. ሻ is the gamma function. Therefore, it is possible to estimate parameters (ߦ,  of GEV (ߢ and ,ߙ
distribution using the first three NCMs. The quantile (்ܺ) corresponding to a return period T can be calculated 
using the following expression: 
 

                             

 pX T ln11   [7] 

 
where p is the exceedance probability of interest. 
 For a simple scaling process, it can be shown that (Nguyen et al., 2002) 
 

         kβ
xkαxkfExkμ   [8] 

 
where ߚሺ݇ሻ ൌ  Furthermore, for a simple scaling process, it can be shown that the statistical properties of .݇ߚ
the GEV distribution for two different time scales t and λt are related as follows: 
 

 

 
Hence, based on these relationships, it is possible to derive the statistical properties of sub-daily AMPs using 
the properties of daily AMPs. Therefore, the proposed GEV distribution based on the scaling property of 
NCMs for different rainfall durations can be used to construct the IDF curves for a given site. 
 
3 NUMERICAL APPLICATION 
  To assess the feasibility and accuracy of the proposed decision support tool SDExRain, a case study 
was carried out using NCEP re-analysis data, global GCM climate simulation outputs, and daily precipitation 
as well as at-site AMP data available at Seoul station in South Korea and Dorval Airport station in Quebec 
(Canada) for the 1961-1990 period.  The selected global GCM predictors are based on the outputs from two 
GCMs (the Canadian CGCM3 and the UK HadCM3) for the current 1961-2000 period as well as for some 
future periods 2020s, 2050s, and 2080s under four different climate change scenarios (A1B and A2 for 
CGCM3 and A2 and B2 for HadCM3). The daily precipitation and at-site AMP series for durations ranging 
from 5 minutes to 1 day were used in this study, and the data for the 1961-1990 period were used for model 
calibration and the data for the remaining 1991-2000 period were used for validation purposes.  
 The proposed spatial downscaling method (SDRain) was used to generate 100 daily precipitation series 
and to provide the daily AMP amounts for a local site under the four selected climate scenarios. The 
generated daily precipitation series were used to performing the bias correction based on Equations [3] and 
[4]. The adjusted daily AMP values were then used for estimating the sub-daily AMPs using the proposed 
SDExtreme based on the scaling-GEV distribution. On the basis of these results, the IDF relations for the 
current and future periods for different climate change scenarios at a given site were constructed. For the 
purpose of illustration, Figure 1 shows the achievement of a very good agreement between the adjusted mean 
of GCM-downscaled AMP amounts and the observed at-site values given by HadCM3-A2 for Dorval and 
Seoul stations after making the bias-correction adjustment using the fitted second-order functions (Equation 
[4]). Hence, it can be seen that the derived bias-correction function from the data for the 1961-1990 calibration 
period could improve the accuracy of the GCM-based downscaled AMPs for other time periods in the future.  
 To examine the temporal scaling properties of the AMP series, the SDExtreme provides graphical 
analyses using the first three NCMs. For purposes of illustration, Figure 2 shows the scaling relationships 
between NCMs and rainfall durations for Dorval and Seoul stations. The log-linearity of NCMs shows two 
distinct scaling regimes: from 5 minutes to 30 minutes and from 30 minutes to 1 day for Dorval station; and 

    tt    [9] 

    tt    [10] 

    tt    [11] 

    tXtX TT
   [12] 
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from 10 minutes to 1 hour and from 1hour to 1 day for Seoul station. In addition, the linearity of the scaling 
exponents β(k) against the order of NCMs of AMPs for both Dorval and Seoul as shown in Figure 3 has 
indicated the simple scaling behaviour of the AMPs at these two stations. Hence, it is possible to estimate the 
NCMs (and the corresponding GEV parameters) of AMPs for shorter durations using the NCMs of AMPs for 
longer time scales within the same scaling regime.  
 

 
(A) 

 
(B) 

 
(C) 

 
(D) 

Figure 1. Probability Plots of Observed Daily AMPs and Simulated Values given by HadCM3-A2 for the 
Calibration 1961-1990 Period with and without Bias Correction for Dorval Airport (A and B) and Seoul (C and 

D) Stations 
 

 

(A) 

 

(B) 
 

Figure 2. Log-log Plots of the Non-Central Moments (NCMs) of the First Three Orders against Durations for 
Dorval Airport and Seoul Stations 
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(A) 

 

(B) 
 

Figure 3. Plots of the Scaling Exponents β(k) against the Order of NCMs of AMPs for Dorval Airport (A) 
and Seoul (B) Stations. 

 
 Figure 4 shows the comparison between the observed and estimated AMPs by traditional and scaling 
GEV distributions for 1-hour AMPs for Dorval and Seoul stations. It can be seen that the quantiles derived 
from the daily AMPs using the established scaling relationships agree very well with those values given by the 
traditional fitted GEV distribution as well as with the observed values. Similar results were found for other 
duration and stations. The proposed SDExRain was used to construct IDF curves for Dorval and Seoul 
stations under four different climate change scenarios (HadCM3 A2 & B2 and CGCM3 A1B & A2) for the 
current (1961-1990) and future periods (2020s, 2050s, and 2080s). For illustration purpose, Figure 5 shows 
the probability plots of AMDPs at Dorval station for the 1961-1990 period and future periods (2020s, 2050s, 
and 2080s) using the proposed decision support tool. It can be seen that both CGCM3 and HadCM3 
suggested increasing trends of AMPs for future periods under the four selected climate change scenarios. In 
addition, the climate simulations given by two different GCMs produced two different changes in the maximum 
rainfalls in the future. 
 

 

(A) 
 

(B) 
 

Figure 4. Probability Plots of 1-hour Observed and Estimated AMPs using Traditional and Scaling GEV 
Distributions for the 1961-1990 for Dorval Airport station (A) and Seoul station (B). 

 
4 CONCLUSIONS 
 A decision support tool was proposed in this study to describe the linkages between large-scale climate 
variables at the daily scale to AMPs for daily and sub-daily scales at a given local site. The feasibility and 
accuracy of this modeling tool have been tested using climate simulation outputs from two GCMs (CGCM3 
and HadCM3) under four different climate scenarios and using available AMP data for durations ranging from 
5 minutes to 1 day at two stations located in completely different climatic regions: Dorval Airport station in 
Quebec (Canada) and Seoul station in South Korea for the 1961-2000 period. Results of this numerical 
application have indicated the feasibility and accuracy of the proposed modeling tool. More specifically, it was 
found that the AMP series in Quebec (Canada) and in South Korea displayed a simple scaling behaviour. 
Based on this scaling property, the scaling GEV distribution has been shown to be able to provide accurate 
estimates of sub-daily AM precipitations from GCM-downscaled daily AMP amounts. Therefore, it can be 
concluded that it is feasible to use the proposed SDExRain tool to describe the relationship between large-
scale climate predictors for daily scale given by GCM simulation outputs and the daily and sub-daily AMPs at 
a local site. This relationship would be useful for various climate-related impact assessment studies for a 
given region. 
 Finally, the proposed decision-support tool SDExRAIN was used to construct the IDF relations for a given 
site for the 1961-1990 period and for future periods (2020s, 2050s, and 2080s) using climate predictors given 
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by the CGCM3 and HadCM3 simulations. In general, it was found that AM precipitations at a local site 
downscaled from the HadCM3 displayed a smaller change in the future, while those values estimated from the 
CGCM3 indicated a large increasing trend for future periods. This result has demonstrated the presence of 
high uncertainty in climate simulations provided by different GCMs.  
 

 
(A) 

 
(B) 

 
(C) 

 
(D) 

 

Figure 5. Probability Plots of daily AMPs Projected (A) from CGCM3A1B, (B) from CGCM3A2, (C) from 
HadCM3A2 and (D) from HadCM3B2 Scenarios for the 1961-1990 Period and for Future Periods (2020s, 

2050s, and 2080s) for Dorval Airport Station. 
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ABSTRACT 
 
Rainfall-runoff model is a model to simulate the hydrologic processes of the watershed system. Streamflow, 
which is the result from the rainfall-runoff model, is essential for flood analysis especially for high risk flooded 
area such as Upper Klang Ampang River basin due to rapid development. One of the main input components 
in the rainfall-runoff model is a precipitation data. Radar-based Quantitative Precipitation Estimation (QPE) is a 
method to estimate the distribution of precipitation amount or rainfall by using weather radar data. Gauge rainfall 
data is commonly used in the rainfall-runoff model as a precipitation input. Gauge rainfall data provide accurate 
rainfall data yet it has less spatial distribution. However, Radar-based QPE offer high temporal and spatial 
distribution of rainfall data yet limited accuracy of the rainfall data compare to gauge rainfall data. The objective 
of the analysis is to analyze the streamflow result from the HEC-HMS rainfall runoff model using gauge rainfall 
and radar-based QPE rainfall data. In the HEC-HMS model, SCS CN method was applied as loss model and 
SCS CN Unit Hydrograph as transform method. Two significant events were selected to analyze the streamflow 
results using two different precipitation input, radar-based QPE and gauge rainfall data. Calibration factor for 
radar-based QPE will be discussed to improve the quality of the accuracy for radar-based QPE. From the 
analysis, radar-based QPE showed positive results and is applicable to be use in the flood analysis at Upper 
Klang Ampang River Basin.  

 
Keywords: Rainfall-runoff model; Quantitative Precipitation Estimation (QPE); weather radar; HEC-HMS; streamflow. 

 
 

1 INTRODUCTION 
 Hydrological cycle is a natural process and describes the continuous movement of water in the earth. The 
water experienced physical processes which changes from evaporation, condensation, precipitation, infiltration, 
surface runoff and sub-surface flow. Precipitation or known as rainfall is the most frequent measured in the 
hydrological cycle since the impact of the rainfall is significant to human life (Ward & Robinson, 2000). People 
are interested to know when and where the precipitation would happen, amount of rainfall and the impact of 
rainfall to the river basin either flood or drought in their area. Therefore, the measurement of the amount of 
rainfall is vital especially in the hydrological analysis for the purpose of water resources planning and design. 
Enhancement of the rainfall measurement method by researchers is continuous to improve the quality of 
estimation and the measurement of the rainfall. ( Sun et al., 2000; Smith et al., 2007; Wardah et al., 2008). 
 The relationship between rainfall and runoff in the hydrological cycle could be described through rainfall-
runoff model. The rainfall runoff model will estimate the surface runoff in the channel or river system as response 
to rainfall input data for the target catchment. Numerous rainfall-runoff model software’s are available and each 
of it has its own advantages and disadvantages. One of the widely used rainfall-runoff model software is the 
HEC-Hydrologic Modelling System or known as HEC-HMS. This model shall predict runoff, stage, and timing 
for giving rainfall input into the basin (USACE-HEC, 2000). The model shall produce the hydrographs, which 
are useful for water resources studies such as for flood forecasting, water availability, urban drainage design or 
reservoir design. 

A rainfall-runoff model requires mean areal rainfall estimation to do the computation of the runoff. 
Commonly, rainfall is measured by using a rain gauge instrument, which measures the actual amount of rain 
that falls over in the gauge. The rain gauge instrument provides a point based rainfall data and less spatial 
distribution due to the topography of the catchment area. Another option for better spatial distribution of rainfall 
data is by using weather radar that covers much larger areas that may be impossible for rain gauge installation. 
Radar-based Quantitative Precipitation Estimation (QPE) is able to provide high spatial and temporal rainfall 
data for better usage and analysis (Nagata, 2011).  However, weather radar do not directly measure the rainfall 
but they measure variables related to the electromagnetic properties of hydrometeors (Berne & Krajewski, 
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2013). The weather radar is a remote sensing instrument that emits electromagnetic pulses into the 
surroundings to determine the range, movement’s direction, speed of objects and altitude and gives the 
reflectivity values. (Marshall & Palmer, 1950) developed a power law equation of the relationship between 
reflectivity, Z and the rain rate, R to calculate the value of the rainfall. However, few factors contributing to the 
error of the weather radar data including conversion from reflectivity to rain rate, beam blockage, ground clutter 
and hardware calibration error. Hence, the radar rainfall product needs to be examined before it could be used 
as radar-based QPE in the hydrological modeling (Pedersen et al., 2010; Wüest et al., 2010). The accuracy of 
the radar rainfall data could be improved through calibration of the radar rainfall data with the radar rainfall 
adjustment factor (AF) (Vanaja et al., 2013; Versini, 2012).  

The objective of the study is to analyze the streamflow results from the HEC-HMS rainfall-runoff model 
using gauge rainfall and radar-based QPE rainfall data. Therefore, the rainfall-runoff model was developed 
using HEC-HMS model. In this rainfall-runoff model, SCS CN method was applied as loss model and SCS CN 
Unit Hydrograph was selected to be used in the transform method. The rainfall-runoff model was calibrated and 
validated using the gauge rainfall data. The radar rainfall data was calibrated with the radar rainfall adjustment 
factor before it could be used as a radar-based QPE. Then, the calibrated model was tested with the radar-
based QPE input data and the results were analyzed. 
  
2 STUDY AREA, DATASETS AND SOFTWARES 

  
2.1 Study Area 

Upper Klang Ampang river basin is situated at the east part of the state of Selangor and Federal Territory 
of Kuala Lumpur between 101o.30’ to 101o.55’ E longitudes and 3o to 3o.30’ N latitude. The river named Klang 
River is flowing through the city centre of Kuala Lumpur, which is the capital city of Malaysia. Kuala Lumpur is 
subjected to flood during heavy rain since the city is situated at the low laying area at the confluence of two 
main river systems, Klang River and Gombak River. At the upper part of Klang River, there is a confluence of 
the Ampang River and Klang River and the catchment named as Upper Klang Ampang river basin (Figure 1). 
Upper Klang Ampang river basin is a main watershed for Klang river system to control the amount of runoff flow 
to the downstream to avoid flooding at the Kuala Lumpur city centre during heavy rainfall. The total area for 
Upper Klang Ampang river basin is 171km2. Approximately 10 km from the confluence of Klang Ampang River, 
the Klang Gate Dam is situated at the upstream of Klang River. This dam is surrounded with forest as a water 
catchment for the dam. This dam is used for water supply purposes and also as flood mitigation structure for 
Klang Valley by controlling the release of water to downstream from the dam. Upper Klang Ampang catchment 
has a big differences land use group between urban area and forest area. Immediately after the dam, there are 
many residential areas being developed and caused upper Klang river watershed experience land use change. 
There are high demands of residential area on the hillside of Upper Klang. According to (Kabiri et al., 2013), 
approximately 50% of Klang watershed is urban area and prone to flooding. Mean annual rainfall for upper 
Klang Ampang river basin is 2600mm. 

 

 
Figure 1. Location of study area: Upper Klang Ampang river basin 

 
2.1 Data sources 
 Various data were used in this study. The land use data was obtained from Federal Department of Town 
and Country Planning Peninsular Malaysia (JPBD). Soil data was obtained from Department of Agriculture, 
Malaysia. The digital contour survey data was obtained from Department of Survey and Mapping Malaysia 
(JUPEM) and converted to Digital Elevation Model (DEM) using GIS software to delineate the basin and sub 
basin of the study area. Figure 2 and 3 illustrate the land use and soil type series in the study area. Hydrologic 
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Soil Group (HSG) for Upper Klang Ampang catchment is shown in table 1. Rainfall and flow data were obtained 
from Department of Irrigation and Drainage (DID), Malaysia. Radar data was obtained from Malaysian 
Meteorology Department (MMD) in the CAPPI file format. 
 

  
Figure 2. Land use for Upper Klang Ampang 

river basin 
 

Figure 3. Soil type series for Upper Klang 
Ampang river basin 

 
Table 1. HSG for Upper Klang Ampang Catchment 

Soil Series Area (km2) HSG Texture 
Steepland 99.21 B Silt loam 
Munchong-Seremban 6.06 C Sandy clay 
Rengam-Jerangau 17.07 C Clay 
Mined Land 1.89 D Silty clay loam 
Urban Land 44.69 D Clay loam 
Water 2.20 - Water 
TOTAL 171.12   

 
3 SOFTWARE USED FOR DATA PROCESSING  

 
3.1 ArcGIS 10.2.1 
 Geographical Information system (GIS) was use intensively in this study to delineate the catchment of the 
study area from DEM. ArcGIS 10.2.1 was use together with HEC-GeoHMS extension to create the hydrological 
map and used in the rainfall-runoff model. HEC-GeoHMS extension is a hydrological tool developed by US 
Army Corps of Engineer, Hydrologic Engineering Centre. 
  
3.2 Hydrologic Modeling System (HEC-HMS) 
 Flood peak or runoff hydrograph was simulated using the Hydrologic Engineering Centre-Hydrologic 
Modelling System (HEC-HMS) model. This model is developed by the United States Army Corps of Engineers 
(USACE). This model is semi-distributed, event-scale or continuous model and is designed to simulate the 
precipitation-runoff process of dendritic watershed systems (Feldman, 2000). The model takes into account all 
relevant hydrological processes such as surface runoff, infiltration evaporation and groundwater recharge. HEC-
HMS has three main components, which are basin model, meteorologic model and control specifications. Basin 
model contains the element of the basin, the connectivity, and runoff parameters. Meteorologic model contains 
the rainfall and evapotranspiration data, while control specifications contain the start/stop timing and calculation 
intervals for the run. The basin elements consist of four main elements to be created, which are sub-basin, 
junction, reach and reservoir depends on the basin characteristics. The basin is divided into sub-basins based 
on the terrain condition and also homogenous of soil and land use types. Accuracy of the sub-basin 
characteristics is essential to produce good simulation results. Spatial data for sub-basin characteristics can be 
prepared in GIS platform using HEC-GeoHMS and can be directly imported into HEC-HMS. The Soil 
Conservation Service (SCS) Curve Number (CN) model was used to estimate the runoff. 

3.3 Productx 
 The radar data provided by MMD need a specific software, Productx as an examiner program for radar 
data. Productx is a utility program under Interactive Radar Information System (IRIS) software developed by 
VAISALA. This program was used to check, process and compiled the CAPPI file of the weather radar data in 
the LINUX operating system.  
  
3.4 RAINRATE AUTO V2 program   
 RAINRATE AUTO V2 program was developed to generate the gridded radar-based QPE from the CAPPI 
file. RAINRATE AUTO V2 is built in Linux environment using Shell Script program. It is a scripts collection of 
commands that are stored in a file. The shell can read this file and act on the commands as if they were typed 
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at the keyboard. The program compute the rainrate from the binary CAPPI file using the DB_RAINRATE2 
calculator. This rainrate values will be corrected with radar rainfall adjustment factor and finally produce the 
radar-based QPE in the grid format.  
 
4 METHODOLOGY 
 
4.1 Basin model HEC-HMS 
 Basin model in HEC-HMS requires information on the basin characteristic. The total area for Upper Klang 
Ampang basin is 171km2 derived from the DEM using ArcGIS 10.2.1.  The basin was divided into 22 sub-basins 
based on flow path and the basin properties according to land use and soil type. Figure 4 shows the schematic 
diagram of basin model for the study area. 
 

 
Figure 4. The schematic diagram of the basin model of the Upper Klang Ampang watershed. 
 

 Volume of runoff was estimated by loss model by calculating the losses for the given the rainfall and 
properties of the catchment. In this study, the Soil Conservation Service (SCS) Curve Number (CN) was used 
as a loss method to estimate the loss in the Upper Klang Ampang basin. The CN was determined from the value 
related to the land use and the hydrologic soil group data. For this study, the value of the CN was referred from 
the Guidelines for erosion and sediment Control in Malaysia (USAINS HOLDING SDN BHD, 2010). The HSGs 
consist of four types A, B, C, D. HSG type A is the highest infiltration rate, whereas, HSG type D is the and the 
lowest infiltration rate. The CN values range from 100 for water bodies and to approximately 30 for permeable 
soils with high rate of infiltration. The infiltration loss method or runoff is derived from a set of empirical equations 
define the process for rainfall change into infiltration and runoff; 

 
 Pe= ሺP	-	Iaሻ2 	ሺP	-	Ia)	+	S⁄  

 
Ia = 0.2S 

 
S = (25400 – 254CN) / CN 

 

[1] 
 

[2] 
 

[3] 
 

Substituting Eq. [2] into Eq. [1] gives 
 
 Pe = (P – 0.2S) 2 / (P + 0.8S)  [4] 
where, 
 

 
Pe= accumulated rainfall excess at time t; 
P = accumulated rainfall depth at time t; 
Ia = the initial abstraction (initial loss); 
S = potential maximum retention 

 

 
 In HEC-HMS translation of excess rainfall to runoff on a basin is called the transform method. An empirical 
equation using unit hydrograph is commonly used in the transform method.  In this study, SCS Unit Hydrograph 
(SCS UH) was used to generate the unit hydrograph. SCS UH model is a dimensionless, single-peak UH for 
event based rainfall analysis. SCS UH is based on the converting time and flow axis to dimensionless 
hydrograph for single-peak UH for event-based rainfall analysis. The basin lag time was estimated and 
calibrated during calibration process. The UH peak discharge and time of UH are related based on following 
equations. 
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 Up = C ( A / Tp ) 
 

Tp = ( ∆t / 2 ) + tlag 

[5] 
 

[6] 
where, 
 

	
Up = UH peak discharge 
Tp = Time of UH peak 
C = Conversion constant (2.08) 
A = Area of watershed 
∆t = the excess precipitation duration 
Tlag = the basin lag 

 

                            
4.2 Meteorologic model 
 
4.2.1 Rain gauge rainfall data 
 Rain gauge data represents a point rainfall data at specific location. Hence, it is not sufficient to represent 
the volume of the rainfall over a basin. Network of the gauge station could provide a better representation of the 
volume of rainfall over a basin. From the network of the rain gauges, mean areal precipitation for the basin could 
be establish. Nine rain gauges were used in this study for meteorologic model in HEC-HMS. Table 2 gives the 
geographical coordinate of nine rain gauge stations located in the study area. Gage weight was selected as 
precipitation input type for meteorologic model for Upper Klang Ampang River basin.  
 

Table 2. Rain gauge station used in the study 

No Station Name Station ID Latitude Longitude 

1 Seleh 3217110 3.248 101.768 

2 Klang Gate 3217111 3.235 101.75 

3 Kg Melayu 3117113 3.153 101.761 

4 L4 3117115 3.166 101.743 

5 AU3 3117114 3.18 101.757 

6 AU5 3217113 3.202 101.759 

7 Bkt Belacan 3117111 3.143 101.787 

8 IBMBS Kemensah 3217112 3.216 101.79 

9 The Peak 3117110 3.178 101.783 
 
4.2.2 Radar rainfall data 
 Radar data was obtained from Malaysian Meteorology Department (MMD). The Doppler weather radar 
station is situated at Bukit Subang, Selangor with latitude 3 8.7’N, longitude 101 33.5’E. The distance of radar 
station to study area is 50 km. The Doppler weather radar with S band type was set up with 250Hz frequency 
and 10.64 cm wavelength and has a maximum horizontal coverage of 300 km. The Doppler weather radar 
measures the reflectivity of the raindrop but does not measure the rainfall directly. Therefore, a conversion of 
the reflectivity into rainfall using an empirical power equation, the radar reflectivity (Z) and the rainfall rate (R) 
or known as Z-R relationship. The Subang radar station is using Marshall-Palmer equation,	ܼ ൌ 200ܴଵ., where 
Z is radar reflectivity (mm6/m3) and R is rainrate R (mm/hr) to calculate the rainrate. Radar data was collected 
from year 2014 to 2015 and the data were archived every 10 minutes. The radar data was using CAPPI product 
type and the product data type is R (13) means DB_RAINRATE product. This product data type gives the value 
of rainfall rate by using Z/R Marshall-Palmer Equation.  This weather radar data can only be read in LINUX 
operating system and a utility program named Productx was used to utilize the radar data. 
 The quality of radar data was examined using the Productx program and the radar rainfall adjustment factor 
needs to be determined. The value of radar rainfall adjustment factor was determined by using equation 7. The 
radar rainfall adjustment factor is an average total gauge rainfall over radar rainfall at the gauge rainfall station. 
The point radar data were matched with the point gauge rainfall data at each gauge stations. RAINRATE AUTO 
V2 program calculated the value of rainrate in the study area and generated the output in the grid format.   

  
Radar rainfall AF = ∑ Gauge rainfall / ∑ Radar rainfall 

 

 
[7] 

5 RESULT AND ANALYSIS 
 

5.1 Radar rainfall adjustment factor (AF) 
 Analysis on the weather radar data was done for event on 27 April 2015. The correlation between the radar 
rainfall data and the rain gauge data were tested. Figure 6 shows there is a strong correlation between the radar 
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rainfall and the rain gauge data with R2 is 0.7738. Thus, the radar rainfall is able to be used as QPE for the 
rainfall runoff model. The accuracy of the radar rainfall data was assessed by using the comparison of radar 
rainfall data with observation rainfall data by rain gauges. Radar rainfall data computed from IRIS program was 
compared with the point rainfall data from rain gauges in the study area. Nine rain gauge stations were involved 
in the calibration and validation to determine the radar rainfall adjustment factor (AF). Figure 7 shows the one 
hour rainfall data between radar rainfall and gauge rainfall data for event on 27 April 2015. It shows the radar 
rainfall has low values compared to gauge rainfall data. Radar rainfall adjustment factor was determined from 
the calculation using equation 7 and the value of the radar rainfall adjustment factor was 7.77. Then, the radar 
rainfall was calibrated by multiplying with this radar rainfall AF to improve the radar rainfall data value. The 
improved radar-based QPE is shown in figure 8. 
 

 
Figure 6. Correlation coefficient between radar rainfall and rain gauges rainfall data 

  

  
Figure 7: Comparison for gauge rainfall and 
radar rainfall for event 27 April 2007 at time 

1500 

Figure 8: Comparison for gauge rainfall and 
calibrated radar rainfall after applying the radar 

adjustment factor for event 27 April 2007 at 
1500. 

 
5.2 Rainfall runoff model results using gauge rainfall data 
 The rainfall runoff model was calibrated and validated using the gauge rainfall data. Calibration was carried 
out for the event on 1 July 2014 and validation for the event on 16 April 2014 and the results are shown in the 
figure 9 and 10. Nash-Sutcliffe for calibration was 0.625 with RMS error 17.2 m3/s, while Nash-Sutcliffe for 
validation was 0.580 with RMS error was 22.2 m3/s.  
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Figure 9: Simulation for calibration of the 
rainfall-runoff model using gauge rainfall 

data for event 1 July 2014. 

Figure 10: Simulation for validation of the 
rainfall-runoff model using gauge rainfall 

data for event 16 April 2014 
 
5.3 Rainfall runoff model results using radar-based QPE 
 In order to test the radar-based QPE, one simulation using the radar-based QPE for the event on 27 April 
2015 was done using the calibrated and validated rainfall-runoff model prepared beforehand. Figure 11 shows 
the hydrograph of the simulation peak of the radar-based QPE and the observed discharge value. The result 
shows that the peak discharge for radar based QPE is slightly lower than the observed discharge with 
acceptable Nash-Sutcliffe value, 0.655. Further refine analysis of the radar rainfall adjustment factor is needed 
to improve the result for the peak discharge in the rainfall-runoff model. However, it clearly shows that, there is 
an option to use radar-based QPE in the rainfall-runoff model. 
 

 
Figure 11: Simulation the rainfall-runoff model using radar-based QPE for event 27 April 2015. 

 
6 CONCLUSIONS 
 This study investigates the availability of radar-based QPE as a precipitation input in the rainfall-runoff 
model. The rainfall-runoff model was successfully developed by using HEC-HMS software and was calibrated 
and validated using gauge rainfall data. The radar rainfall data was calibrated using radar rainfall adjustment 
factor to improve the quality of the radar-based QPE. The rainfall-runoff model was tested with the radar-based 
QPE to simulate the hydrograph. From the results of the rainfall runoff model for the gauge rainfall data and the 
radar-based QPE, it can be concluded that the radar-based QPE is available to be used as precipitation input 
in the rainfall runoff model to predict the peak discharge of the flood event. However, radar rainfall adjustment 
factor needs to improve and re-test to get better results of the peak discharge in the rainfall runoff model. 
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ABSTRACT  
 
Climate change is a global issue and is one of the major concerns in water resources planning and 
management during the past decades. Changing rainfall pattern can directly affect an occurrence of an 
extreme event on floods and droughts, which will cause future conflicts especially on water supply and flood 
management. The purpose of this study is to examine the variability of rainfall in the Yom River basin, 
Thailand, over the past 90 years (1921–2015). This study evaluates long-term trends in rainfall and various 
rainfall-related extreme events, which consist of the annual precipitation (PRCTPOP), consecutive dry days 
(CDD), consecutive wet days (CWD), number of heavy rainfall days (R10), number of very heavy rainfall days 
(R20), daily maximum rainfall (Rmax1), five-day maximum rainfall (Rmax5), and annual total rainy day (Rday) in the 
Yom River basin, Thailand. Rainfall dataset from 13 hydrological stations across the basin are analyzed using 
the Mann-Kendall method at 95 percent confident level. Analyses of these data showed that the average 
annual rainfall of the whole basin varies between 1,018 and 1,179 mm with the minimum and maximum 
annual rainfall of 480 and 4,047 mm/y, respectively. The results from this study reveals that an increasing 
trend are dominating in 3 indices as Rmax1, CWD and Rday, while the decreasing trend are dominating in the 
remaining in 5 indices as PRCPTOT, Rmax5, CDD, R10, and R20 during the past century. Results of this 
study indicate that the Yom River basin is highly vulnerable to droughts and floods driven by the variability in 
rainfall. The impacts of changes in rainfall pattern in the Yom River basin should be considered in the future 
water resources planning and management of the country. 
  
Keywords: Long-term rainfall trend; rainfall indices; Mann-Kendall test; extreme rainfall events; climate 

change.  

 
1 INTRODUCTION 

Precipitation is one of the most important parameters in the design and planning of water resources 
management (Adamowski and Bougadis, 2003). Rainfall is the key factor in rainfall-runoff relationship, which 
is a crucial component in flood/drought assessment (Chattopadhyay and Edwards, 2016). Changes in daily 
rainfall pattern have been reported in many areas such as the Mediterarnean region (Philandras et al., 2011), 
United States (Karl and Knight, 1998; Pagán et al., 2016), Canada (Aziz and Burn, 2006), Pakistan (Ahmad et 
al., 2015), Australia (Barua et al., 2013). Furthermore, it was also suggested that extreme precipitation events 
have been increasing in intensity and frequency. For example, the elevated frequencies of extreme 
precipitation events were found in the central, western, and northern United States possibly resulting in 
hydrological flood events in some areas of the United States (Kunkel and Andsager,1999; Kunkel et al., 2003). 
In contrast, the dry areas become drier and the wet areas become wetter in some regions of the world (Beule 
et al., 2016). In the Maghreb countries (Algeria, Morocco and Tunisia) located in northern Africa, for instance, 
have significant decrease trends of total precipitation and wet days, whereas the duration of dry periods of the 
region tends to increase (Tramblay et al., 2013; Di Baldassarre et al., 2010). 

For Thailand, rainfall pattern trend was conducted by several studies. Based on analyses long-term 
trends of rainfall indices over the Indochina Peninsula using Asian Precipitation-Highly-Resolved 
Observational Data Integration towards Evaluation of Water Resources (APHRODITE) data (1960-2007) with 
a spatial resolution of 0.5°×0.5°, Yazid and Humphries (2015) suggested that Thailand’s annual rainfall pattern 
over the past five decades is mainly dominated by non-significant negative trend, and the country experienced 
a negative trend in number of dry days (CDD), and a positive trend in the number of wet days (CWD). 
Meanwhile, Beule et al. (2016) found an increasing trend in CDD and a decreasing trend of CWD the rainfall 
data from 48 stations across the country during the period 1964-2012. With different dataset and number of 
rainfall stations, it possibly resulted a different trend in a regional and national scale of existing studies. 
Therefore, analyses of long-term rainfall trend in local scale may be needed for better understanding of 
changes in hydrological processes which plays a major role for effective water supply and demand 
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management.  

The objective of this study is to analyze long-term trends of daily rainfall indices over the Yom River basin 
where floods and droughts occur in common using rainfall data observed at 13 hydrological stations during the 
period 1921-2015. The non-parametric statistical method, Mann-Kendall test, was used to determine the long-
term trend in 8 rainfall indices recommended by Expect Term on Climate Change Detection and Indices 
(ETCCDI). The selected indices, which provide information on the wetness and dryness, consist of thenumber 
of heavy rainfall days, (R10≥10 mm), number of very heavy rainfall days, (R20≥20 mm), consecutive wet days 
(CWD ≥1 mm), daily maximum rainfall (Rx1), five-day maximum rainfall (Rx5), annualrainy day total (Rrainyday), 
consecutive dry days, (CDD <1 mm).The results of this study will contribute information on trend and 
variability of rainfall extremes that are useful for an effective water resources planning and management in the 
Yom River basin. 
 
2 STUDY AREA AND DATA SET 
 
2.1 Study area 

The Yom River basin originates in the northern part of Thailand. The basin is situated roughly between 
14° 50’ and 18° 25’ northern latitudes, and 99° 16’ - 100° 40’ eastern (Apichichat, 2014). The Yom River basin 
is a part of the Great Chao Phraya River Basin, which is the largest drainage basin in Thailand located at the 
heart of the country. The drainage area of the Yom River basin is approximately 24,074 km2 (Figure 1). The 
elevation of the basin broadly ranges between 20 and 360 m above mean sea level (MSL) (Phetchprayoon et 
al., 2010). The main channel of the river is 735 km in length with the river gradient varying from 1:700 to 
1:35,000 (Bidorn et al., 2015). The river flows from north to south through eleven provinces before merge into 
the Nan River forming the Chao Phraya River at Nakhon Sawan Province (RID, 2004).  

The Yom River basin can be divided into two districts terrain systems: the upper and lower Yom River 
basins. The upper Yom River sub-basin is characterized by a mountainous feature with the elevation varying 
between 280 and 360 m MSL. About 51 percent of upper Yom River sup-basin is a forest area, and the 
remaining consists of agricultural and urban areas (Phetchprayoon et al., 2010). The lower Yom River basin is 
defined by floodplain with the geographic relief ranging from 20 to 180 m MSL. Approximately 74 percent of 
the lower Yom River basin is occupied by farming and residential areas, while the rest of the basin (26 percent) 
is a forest area (Geo-Informatics and Space Technology Development Agency (GISTDA), 2005). The climate 
of the Yom River basin is under the influence of the southwest and northeast monsoons. The mean annual 
rainfall is about 1,250 mm (Bidorn et al., 2015) with the minimum and maximum of 800 and 1,600 mm, 
respectively. Almost 90 percent of the annual rainfall occurs during rainy season (May to October) caused by 
the southwest monsoon. The mean annual discharge of the basin widely varies from 200 to 2,000 m3/s 
(Sriariyawat et al., 2013). 
   
 
 
 
 
   
 
 
 
 
 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure1. Location map of the Yom River basin and the location of hydrological stations. 
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2.2 Rainfall data and quality control 

In this study, daily rainfall data from 13 hydrological stations across the Yom River basin during the 
period 1921-2015 were collected from the Royal Irrigation Department (RID) and Thai Meteorology 
Department (TMD). The location of the stations is depicted in Figure 2, and the basic information of the rainfall 
data from each station is summarized in Table 1. Of the 13 hydrological stations, 6 stations situated in the 
upper Yom River basin (73032, 16092, and 40032 station are located in the mountainous areas and 40052, 
40013, and 40022 stations are in the agricultural areas). It was found that the rate of missing data at these 
stations ranged between 5 and 12 percent. Meanwhile, the rainfall datasets from the remaining stations 
located in the lower Yom River basin (59032, 59042, 12032, 38032, and 39022 station are located in the 
mountainous areas and 59062 and 59022 stations are in the agricultural areas) have missing data rate of 17-
45 percent. Because rainfall record length of those 13 stations are more than 25 years, these rainfall datasets 
are statistically valid for analyzing the trend. However, if more than 5 percent of data during the rainy season 
(May-September) for a year is found, that year is discarded from the trend analysis.  

 
Table1. Detail of rainfall stations. 

73032 16092 40022 40013 40032 40052 12032 38032 59022 59032 59042 59062 39022

Latitude (E) 19° 8’ 31.1" 18° 42’ 25.2" 18° 2’ 56.3" 18° 8’ 45.6" 18° 20’ 20.3" 18° 4’ 26.4" 16° 39’ 46.8" 16° 5’ 27.6" 17° 30’ 54" 17° 18’ 54" 16° 57’ 3.6" 17° 0’ 14.4" 16° 45’ 21.6"

Longtitude (N) 100° 16’ 40.8" 99° 58’ 19.1" 100° 6’ 53.9" 100° 15’ 57" 100° 19’ 11.9" 99° 50’ 9.5" 99° 35’ 31.2" 100° 15’ 54" 99° 45’ 50.3" 99° 50’ 9.5" 99° 58’ 44.3" 99° 34’ 37.1" 100° 7’ 19.2"

Open Year - 2015 1952 1921 1921 1921 1921 1921 1921 1923 1921 1921 1922 1922 1921

Missing Year 3 5 16 7 9 9 19 41 26 18 17 35 16

Period Year 60 89 78 87 85 85 75 51 68 76 76 58 78

% of missing data 5 5 17 7 10 10 20 45 28 19 18 38 17

average rainfall (mm.) 1154 1100 1075 1151 1229 1115 1221 1018 1112 1116 1242 1054 1088

max (mm.) 1622 1823 1695 1746 2443 2021 3695 1730 1798 3039 2551 1626 4048

min (mm.) 650 655 615 728 613 481 615 570 603 604 804 575 621

Upper Yom Lower Yom
Name

 
3 METHODS 
  
3.1 Extreme rainfall indices  
 To investigate long–term patterns in annual rainfall and extreme rainfall events in the Yom River basin, 
the rainfall data series observed during the past nine decades were used. The original of rainfall event 
analysis was adapted from World Meteorological Organization, (WMO, 2009) and established by several 
indices that has been widely used to determine trends including frequency and intensity of extreme weather 
events. In this study, 8 rainfall indices that represent frequency and intensity of rainfall pattern and rainfall 
extremes were selected as detailed in Table 2. Frequency indices compose of CDD, CWD, R10, R20, and Rday 

whereas PRCPTOT, Rmax1, Rmax5 are intensity indices. Trends of these eight rainfall indices were analyzed to 
assess the climate dynamic occurred in the Yom River basin. 

 
Table2. Definition of rainfall indices. 

Name Indices Difinition Unit
annual precipitation total PRCPTOT The annual precipitation total mm
Consecutive dry days CDD The Maximum length of consecutive dry days with R < 1 mm Days
Consecutive wet days CWD The Maximum legth of consecutive wet days with R ≥  1 mm Days

Daily maximum rainfall Rmax1 The daily annual maximum rainfall mm

5-day maximum rainfall Rmax5 The 5-day annual maximum rainfall mm

Number of heavy rainfall days R10 The annual count of days when days rainfall ≥ 10 mm Days

Number of very heavy rainfall days R20 The annual count of days when days rainfall ≥ 20 mm Days

Annual rainy day total Rday The annual total rainfall in wet day (R > 1 mm) Days

* R = Daily rainfall 
 

3.2 Trend Analysis 
 Many different techniques have been proposed for statistical analyzing trend of time series data. 

Those techniques can be categorized as parametric and non-parametric methods. Parametric method is 
normally used to detect trends in data with independent and normal distribution (Gocic and Trajkovic, 
2013). For non-parametric method, it can be used to identify trend in independent data with skewness. 
The Mann-Kendall (MK) test is one of the most effective non-parametric method to test for randomness 
against trend in hydrologic and climatic time series (Partal and Kahya, 2006; Gajbhiye et al., 2016), and 
the MK test is low sensitive to missing data (Yazid and Humphries, 2015). Onaz and Bayazit (2003) 
suggested that the parametric method, t-test, has less accuracy than non- parametric test for detecting 
trend in data with skewness. During the last decade, the Mann-Kendall test has been widely used in trend 
analyses in many studies (Chattopadhyay and Edwards, 2016; Salami et al., 2014; Antonnia and Paolo, 
2009). 
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 The Mann-Kendall test is based on statistics (S) for a time series of the length. The S is defined as Eq. 

[1]: 

    


  

  
n 1 n

j k
k 1 j k 1

s sgn(x x )        [1] 

 
 where xj and xk are and the time series observations in chronological order, n is the length of time series, 
and sgn can be obtained from Eq. [2]: 
 

   


  



j k

j k j k

j k

1, if x -x  >0

sgn(x x ) 0, if x -x  =0

-1, if x -x  <0

     [2] 

 
The standardized Mann-Kendall test statistics (Z), which is used to evaluate the statistical significant of 

trend, is calculated using Eq. [3]: 
 

    



 




s - 1
, if s >0

v(s)

Z 0, if s = 0

s + 1
, if s <0

v(s)

     [3] 

 
where v(s) is variance of S calculated from Eq. [4]: 
 

    
 
  

n(n - 1)(2n - 5)
v(s) = 

18
     [4] 

 
A positive Z value indicates an increasing trend in the time series. Meanwhile, a negative Z value 

indicates that the time series have a decreasing trend. To test for upward or downward trends at level of 
significance (  - value), the null hypothesis (H0) is rejected when the absolute value of Z is greater than Z1-

/2 where Z1-/2 and  are the standard normal deviates and significant level for the test, respectively. If the 
null hypothesis in invalid, the trend is significant meaning that the trend did not occur by chance. In this study, 
the 5 % significance level (Z0.025=1.96) was used to. 

In addition, Sen non-parametric test (Sen, 1968) is can be used to calculate the magnitude of trends in 
the time series data. The test proceeds by calculating the slope of a change in observation values to the 
change of the corresponding times. According to Sen’s test, the overall estimator 

nseb is the median of the 

data slopes, and it can be calculated from Eq. [5]: 
 

     
 
 
 

n

i j
se

X  - X
b  = Median 

i - j
     [5] 

 
where Xi and Xj are data values at time i and j, respectively. 

 
4.  RESULT AND DISCUSSIONS 

 In this study, the significant and magnitude of trend in the selected rainfall indices were analyzed based 
on the long-and short-terms dataset of each hydrologic station. The long-term trend was calculated using 
rainfall time series more than 50 years to investigate the impact of climate change in the river basin. The 
short-term trend, which probably provide an information of current rainfall situations and frequency extreme 
events of the basin, was analyzed based on 15-years rainfall dataset (2000-2015). Results from trend 
analyses of the rainfall and rainfall-related extremes in the Yom River basin are discussed below. 
 
4.1 Trend in rainfall 
 Long-term and short-term trends of annual rainfall (PRCPTOT) at 13 stations over the Yom River basin 
are listed in Table 3, and the variation of the annual rainfall of each station is plotted as shown in Figure 2. It 
appears that about 62% of the Yom River basin area, which mainly is located in the upper Yom River basin, 
had an insignificant decrease trend over the long-term period. About 18% of the basin area had an 
insignificant increase long-term trend. The significant increase trend in annual rainfall during the past 50 years 
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was found at two locations (Stations 16092 and 59062) situated at the western part of the upper and lower 
Yom River basins (Figure 1), and the trend is likely to continue. Results from short-term rainfall data analysis 
indicate that the annual rainfall of about 69% of the basin area was an insignificant decrease during the period 
2000-2015 and the annual rainfall reduction occurred mainly in the upper Yom River basin. However only 17% 
of the basin area (mainly located in the lower Yom River basin) had an increase in annual rainfall with an 
insignificant trend during the past 15 years. However, a significant reduction in annual rainfall between 2000 
and 2015 was found at Station 40052 located at the mid of the Yom River basin covering approximately 8% of 
the basin. 
 Even through only a few stationsshow statistical significance in their long-term trends, Sen’s slopes of 
those stationsvarid from 17.36 to – 84.36, meaning that the abruptly changes in annual rainfall occurred 
during the past decade have a higher degree than those occurred during the past century. 
 

Table 3. The detail of PRCPTOT index. 

 
* + = Increasing Trend, - = Decreasing Trend 
 
4.2 Trend in extreme rainfall events 

Trends in extreme rainfall indices were analyzed at each hydrological station to assess changes in 
frequency and intensity of rainfall-related extreme events. Results from extreme rainfall indices in the Yom 
River basin are discussed below.  

 
4.2.1 Rainfall intensity 

The daily annual maximum rainfall (Rmax1) and the 5-daily annual maximum rainfall(Rmax5) indices give an 
indication of the trends in rainfall amounts, which usually come from extreme weather events. Any significant 
changes in these indices may cause severe damages in the Yom River basin due to insufficient facilities 
dealing with water-related extreme events in this area. Results from trend analyses for Rmax1 and Rmax5 are 
shown in Tables 4 and 5, respectively. It appears that the Rmax1 in the study area varied from 63.1 to 96.0 
mm/year for the long-term period and from 61.2 to 104.7 mm/year for the short-term period.The average of 5 
daily annual maximum rainfall ranged from 112.9 to 175.0 mm/year and 113.7 to 185.2 mm/year during the 
long- and short-term periods respectively. 

Based on trend significance values of Rmax1 in Table 4, it appears that a significant increasing trend in 
rainfall intensity or extreme events during the past century was found along the western part of the Yom River 
basin covering about 28% of the total basin area. Meanwhile, about 32% of the basin area located along the 
eastern part of the basin has an increasing rainfall intensity during the same period. During the past decade, it 
was found that approximately 86% of the basin area has experienced an insignificant decline of rainfall 
intensity due to extreme events. 

The majority Rmax5 trend found in Table 5 is similar to trend of Rmax1. However, the significance of either 
increase or decrease trends in rainfall intensity analyzed from Rmax5 covers less areas than from Rmax1for the 
long-term period. Only 16% of the basin area has a significant decrease trend in rainfall intensity over the 
recent years.  

 
4.2.2 Wet, dry and rainy days 

The maximum consecutive dry days (CDD) and maximum consecutive wet days (CWD) indices describe 
the duration of dry and wet period, respectively. In general, the CDD and CWD always show an opposite trend. 
Results of trend test of CDD and CWD indices for the Yom River basin are presented in Tables 6 and 7, 
respectively.  
 
 
 
 

 

station 73032 16092 40032 40013 40022 40052 59022 59032 59062 59042 12032 38032 39022

Trend nature - + - - - - - - + + + + -
Trend signifcant No Yes No No No No No No Yes No No No No

Sen's slope: -1.06 2.50 -1.83 -1.14 -1.46 -0.63 -3.64 -1.69 5.87 0.68 3.49 2.62 0.35

Available years 61 87 86 88 79 86 68 76 60 78 76 54 79

Min (mm) 650 655 613 728 615 481 603 604 575 804 615 570 621

Max (mm) 1622 1823 2443 1746 1695 2021 1798 3039 1626 2551 3695 1730 4048

Trend nature - - - - + - - + + - + NA -
Trend signifcant No No No No No Yes No No No No No No No

Sen's slope: -23.47 -15.44 -30.30 -9.86 25.30 -40.26 -84.06 17.36 22.26 -21.48 -5.33 55.84 -32.37

Available years 15 13 15 16 11 16 8 10 12 12 11 5 9

Min (mm) 650 827 774 814 661 664 713 672 575 806 795 681 745

Max (mm) 1511 1715 1672 1513 1469 1743 1600 1409 1601 1523 1754 1202 1489

Long term data set during 1921 - 2015

Short term data set during 2000 - 2015
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Table 4. The detail of Rmax1 indices. 

 
* + = Increasing Trend, - = Decreasing Trend 
 

Table 5. The detail of Rmax5 indices. 

 
* + = Increasing Trend, - = Decreasing Trend 

  
Regarding the Table 6, the decreasing trend in dry duration was found in 56% of total basin scattered 

across the Yom River basin over the period 1921-2015. However, only 13% of the basin area has a 
statistically significant reduction of dry period. However, during the past 15 years, the insignificant increase of 
dry duration was found in the Yom River basin up to 70% of the total area, and about 20% of the basin has a 
significantly increase trend in dry period. 
 For the wet duration, Table 7 shows that the increasing trend in wet duration was found in 77% of the 
basin area over the past century, whereas the decrease trend in wet period was mainly found in the lower 
Yom River basin. However, the change in wet duration over the long-term period is not statistical significant. 
During the past decade, insignificant decline trend in wet duration was found in most of the whole basin. 
However, only 15% of the total area located in the upper Yom River basin has a significant reduction in wet 
duration.  

The number of total annual rainy day (Rday, rainfall > 1 mm) indices provide information of the wetness of 
the area. Results of trend analysis on Rday is summarized in Table 8. The results indicate that the whole area 
of the upper Yom river basin has an increasing trend of annual rainy days during the period 1921-2015, but 
only 4% of the area has a statistically significant increase trend. In the lower Yom River basin, the annual 
rainy days is statistically significant reducing in 44% of the lower Yom River basin area over the last 
century.However, most of the whole area of the Yom River basin has experiencing the reduction of rainy day 
during the period 2000-2015 with a statistical significant decrease trend found at the mid of the basin. 

 
Table 6. The detail of CDD indices. 

 
* + = Increasing Trend, - = Decreasing Trend 

station 73032 16092 40032 40013 40022 40052 59022 59032 59062 59042 12032 38032 39022

Trend nature - + - + - + - - + + + + +
Trend signifcant Yes Yes No No No Yes Yes Yes Yes No No No No

Sen's slope: -0.49 0.38 -0.26 0.03 -0.20 0.21 -0.32 -0.25 0.29 0.11 0.25 0.82 0.12

Available years 61 92 90 90 83 88 85 85 69 85 86 73 90

Min (mm) 42 34 36 37 19 35 8 14 30 10 14 6 20

Max (mm) 181 216 267 218 212 157 181 230 163 213 205 129 500

Trend nature - - - - - - - + - + + NA -
Trend signifcant No Yes No Yes No No No No No No No No Yes

Sen's slope: -1.30 -6.45 -0.54 -3.01 -4.43 -1.53 -2.82 -0.35 -0.65 3.43 0.72 -1.87 -3.71

Available years 15 15 16 16 15 16 16 14 16 16 15 8 15

Min (mm) 43 45 37 49 19 37 8 14 33 10 25 49 20

Max (mm) 140 216 144 218 171 153 141 92 163 213 191 86 401

Long term data set during 1921 - 2015

Short term data set during 2000 - 2015

station 73032 16092 40032 40013 40022 40052 59022 59032 59062 59042 12032 38032 39022

Trend nature - + - - - + - - + - + + +

Trend signifcant No Yes Yes No No No No Yes No No No Yes No

Sen's slope: -0.40 0.80 -0.51 -0.16 -0.44 0.30 -0.37 -0.46 0.31 -0.03 0.45 0.96 0.15

Available years 62 92 90 90 83 88 83 85 69 85 86 73 89

Min (mm) 80 59 75 45 19 84 14 27 40 10 20 11 22

Max (mm) 336 347 518 253 394 281 355 833 269 303 562 281 770

Trend nature - - - - - - - + - - - NA -

Trend signifcant No No No No No Yes No No No No No No Yes

Sen's slope: -2.61 -2.60 -2.98 -4.46 -5.93 -5.58 -6.30 0.10 -1.98 -1.94 -0.49 -8.77 -5.69

Available years 15 15 16 16 15 16 15 14 16 16 15 8 15

Min (mm) 80 70 75 76 19 96 14 27 77 10 38 52 22

Max (mm) 256 347 260 252 262 240 355 185 269 300 562 155 408

Long term data set during 1921 - 2015

Short term data set during 2000 - 2015

station 73032 16092 40032 40013 40022 40052 59022 59032 59062 59042 12032 38032 39022

Trend nature - + + - - + + - - - - + -

Trend signifcant No No No Yes No No Yes No Yes No No No No

Sen's slope: -0.21 0.28 0.00 -0.26 -0.26 0.11 0.51 -0.08 -0.75 -0.08 -0.04 0.07 -0.15

Available years 61 92 88 90 80 88 83 84 69 91 85 64 88

Min (mm) 30 48 37 36 40 49 38 48 47 35 26 55 32

Max (mm) 197 212 212 168 218 214 267 191 190 184 181 236 247

Trend nature + + + - + - + - + + - NA +

Trend signifcant No Yes No No No No No No No No No No Yes

Sen's slope: 3.40 8.00 1.58 0.16 1.00 -0.08 2.23 -2.80 0.81 0.50 -3.00 22.60 7.46

Available years 15 15 16 16 12 16 14 13 16 15 15 6 12

Min (mm) 38 67 37 38 48 61 54 48 50 41 49 68 63

Max (mm) 164 212 159 111 218 180 267 184 190 171 181 222 215

Long term data set during 1921 - 2015

Short term data set during 2000 - 2015
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Table 7. The detail of CWD indices. 

 
* + = Increasing Trend, - = Decreasing Trend 
 

Table 8. The detail of Rday indices. 

 
* + = Increasing Trend, - = Decreasing Trend 
 
4.2.3  Heavy and extreme rainfall days 

The number of heavy rainfall day (R10, Rainfall>10 mm) and the number of very heavy rainfall days (R20, 
Rainfall>20 mm) is define by the number of maximum consecutive day that rainfall greater than 10 mm/day 
and rainfall greater than 20 mm/day during a year. The spatial trends of the R10 and R20 indicesare presented 
in Tables 9 and 10 respectively. The results in Table 9 indicate that about 62% of the basin mainly located in 
the upper Yom River basin has a decreasing trend in number of the days with heavy rainfall, and the extreme 
events are found to decrease significantly in 17% of the whole basin area over the period 1921-2015. 
Meanwhile, the rainfall extreme events seem to insignificantly increase in the lower Yom River basin during 
the same period. From 2000 to 2015, the rainfall extreme events decreased insignificantly for the whole river 
basin. 

Based on trend analysis of the R20 in Table 10, the occurrence of rainfall extreme events seems to 
decrease over the upper Yom River basin during the past century. However, the rainfall extremes increase 
significantly at the southmost part of the lower Yom River basin during the same period. Similar to the trends 
in R10, more than 90% of the basin area has a reduction in rainfall extreme events, especially in the lower Yom 
river basin over the past 15 years. 

 
Table 9. The detail of R10indices. 

 
* + = Increasing Trend, - = Decreasing Trend 

 
 
 

station 73032 16092 40032 40013 40022 40052 59022 59032 59062 59042 12032 38032 39022

Trend nature + + + - + - + - + + + - +

Trend signifcant No No No No No No No No No No No No No

Sen's slope: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.02

Available years 63 92 90 90 80 88 82 84 69 91 89 72 88

Min (mm) 1 2 3 4 3 3 2 3 2 2 1 2 2

Max (mm) 15 16 23 14 16 28 22 16 15 22 21 19 21

Trend nature - - - - - - - - + - - NA -

Trend signifcant No Yes No No Yes No No No No No No No No

Sen's slope: -0.07 -0.30 -0.05 -0.08 -0.63 0.00 -0.25 0.00 0.00 -0.20 -0.27 -0.23 -0.12

Available years 15 15 16 16 13 16 13 13 16 15 13 8 12

Min (mm) 3 3 5 4 4 3 3 3 3 3 1 3 3

Max (mm) 13 12 17 11 13 11 12 7 9 9 10 11 10

Long term data set during 1921 - 2015

Short term data set during 2000 - 2015

station 73032 16092 40032 40013 40022 40052 59022 59032 59062 59042 12032 38032 39022

Trend nature + + + + + + - - + - + - +

Trend signifcant No No No Yes No No Yes No No Yes No Yes Yes

Sen's slope: 0.37 0.17 0.08 0.53 0.21 0.03 -0.20 -0.02 0.11 -0.22 0.02 -0.35 0.23

Available years 62 75 74 85 71 75 73 71 57 80 81 65 75

Min (mm) 28 32 39 37 31 37 18 18 15 19 21 19 22

Max (mm) 133 102 111 150 115 110 91 94 104 124 112 101 109

Trend nature - - - - - - - - + - - NA -

Trend signifcant No No No No Yes No No No No No No No No

Sen's slope: -1.50 -1.11 -1.00 -0.91 -4.25 -2.06 -1.00 -2.93 0.33 -1.44 -1.05 -3.13 -3.13

Available years 15 10 12 14 9 13 12 9 14 14 12 5 12

Min (mm) 41 45 64 93 55 42 18 18 15 19 22 19 22

Max (mm) 133 92 106 136 97 86 80 78 92 92 84 71 96

Long term data set during 1921 - 2015

Short term data set during 2000 - 2015

station 73032 16092 40032 40013 40022 40052 59022 59032 59062 59042 12032 38032 39022

Trend nature - + - - - - - - + + + + -

Trend signifcant No No No Yes No No Yes No No No No No No

Sen's slope: -0.06 0.02 -0.05 -0.06 -0.06 -0.03 -0.14 -0.07 0.12 0 0 0 -0.03

Available years 62 92 81 89 90 88 84 69 81 84 84 69 87

Min (mm) 11 8 8 16 10 9 8 7 8 6 7 9 9

Max (mm) 52 75 66 54 68 85 69 72 51 56 62 56 81

Trend nature - - - - - - - - - - - NA -

Trend signifcant No No No No No No Yes No No No No No No

Sen's slope: -0.50 -0.33 -0.71 -0.05 -0.61 -0.50 -1.86 -0.27 -0.54 -0.92 -0.50 -3.53 -1.73

Available years 15 15 13 16 16 16 14 8 14 13 15 16 12

Min (mm) 25 15 8 25 22 31 8 9 8 6 7 10 12

Max (mm) 47 50 46 50 54 63 52 40 42 44 48 56 54

Short term data set during 2000 - 2015

Long term data set during 1921 - 2015
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Table 10. The detail of R20indices. 

 
* + = Increasing Trend, - = Decreasing Trend 
 
5. CONCLUSIONS 

This study was to determine long-term (1921-2015) and short-term (2000-2015) trends in rainfall indices 
for 13 rainfall stations covered the Yom River basin. The non-parametric statistics test,Mann-Kendall method, 
was applied to detect eight rainfall indices event, which are the annual precipitation (PRCTPOP), consecutive 
dry days (CDD), consecutive wet days (CWD), number of heavy rainfall days (R10), number of very heavy 
rainfall days (R20), daily maximum rainfall (Rmax1), five-day maximum rainfall (Rmax5), and annual total rainy day 
(Rday). 

The PRCTPOP indicator shows that increasing trend of annual rainfall mainly occurred in the lower part 
of the Yom River basin. Meanwhile, decreasing trend of the annual rainfall was found in the upper part of the 
basin. The analyses of Rmax1 and Rmax5 indices reveal that approximately 28% of the total area of the Yom 
River basin located in the western part of the basin has a significant increasing trend in rainfall intensity or 
extreme events during the past century. Meanwhile, decrease of rainfall intensity or extreme events was found 
along the eastern part of the basin covering 32% of the Yom River watershed. The results also indicate that 
rainfall intensity due to extreme events is insignificantly decreasing in more than 80% of the total basin area 
during the past 15 years. 

 Based on the analyses of CDD, CWD, and Rday indices, which define duration of wet and dry periods, it 
appears that the dry duration of more than 55% of the Yom River basin is seemly decreasing over the period 
1921-2015. However, during the past 15 years, about 70% of the river basin has experienced an insignificant 
increase of dry duration. The results also show that increasing trend in wet duration was found in 77% of the 
basin area during the past century except in the lower Yom River basin where the decrease trend in wet 
period was found. Nevertheless, wet duration of the whole basin is insignificantly decreasing during the past 
decades. Results of trend analysis on Rday indicate that the annual rainy days of the areas located in the upper 
Yom river basin has insignificantly increased during the period 1921-2015, but the significant decrease of 
annual rainy days was found in 44% of the lower Yom River basin area. It was also found that during the 
period 2000-2015 a statistical significant decrease trend was found only at the mid of the basin. 

The results from the analyses of number of heavy rainfall (R10 and R20) suggest that the occurrence of 
rainfall extreme events is likely decreasing over the upper Yom River basin during the past century. 
Meanwhile, the significantly increasing of rainfall extremes was found at the south most part of the lower Yom 
River basin. It also found that rainfall extreme events have decreased in more than 90% of the basin area, 
especially in the lower Yom river basin over the past 15 years. 
 Based on the results analyzed from the eight rainfall indices, it can be implied that a significantly 
increasing tendency of flooding was found along the western part of the Yom River basin where the effective 
drainage capacity is limited. Furthermore, the results also suggest that the occurrence of drought trends to 
increase in middle portion of the Yom river basin. The information from this study may be helpful for improving 
water resources planning including flood/drought management in the Yom River basin.  
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ABSTRACT  

 
Flash flooding is the rapid flooding caused by the stormwater of intense rainfall associated with 
thunderstorms. Flash flooding in urban area has always been a nightmare as it can happen anytime and 
cause severe damage and sometimes can even lead to loss of lives. Flooding reveals the deficiencies in 
existing stormwater facilities and management practices. The development of effective design requires 
comprehensive understanding of flooding together with the stormwater infrastructure and system. Although 
one-dimensional (1-D) hydraulic modelling has been extensively used and proven to be useful for flood 
management but the capability is basically limited to water profiles and some hydraulic variables. For specific 
analyses such as overland flow in floodplains, determining direction and flood propagation rate, inundation 
extent, depths and duration requires a more sophisticated two-dimensional (2-D) modelling techniques. With 
the advent of geographic information system (GIS), digital terrain model (DTM), and advancement in hydraulic 
modelling software, 2-D modelling have begun to be adopted for analyses that require flood plain mapping 
and the analysis of overland flows. Besides, recent developments in flood modelling have led to the concept of 
coupled hydraulic model. With the availability of DTM for an urban drainage study, this paper illustrates the 
successful application of a coupled XP SWMM 1D and XP-2D model. The study is conducted for urban 
drainage along Jalan Sibiyu, Bintulu. Simulation results show that the coupled model is capable of providing 
crucial information such as direction and rate of flood propagation, flood inundation extent, flood depth as well 
as duration which in turn provides a better understanding of the actual flood behavior at the study area. The 
study illustrate that 2-D modelling results provide a better representation of the actual flood phenomenon to 
the designers in order to derive the optimum and cost-effective flood mitigation solutions. 

 
Keywords: One-dimensional (1-D); two-dimensional (2-D); flood, XP SWMM.  

 
 

1     INTRODUCTION   
Flash flooding is the rapid flooding caused by the stormwater of intense rainfall associated with 

thunderstorms. Flash flooding in urban area has always been a nightmare as it can happen anytime and 
cause severe damage and sometimes can even lead to loss of lives. Flooding reveals the deficiencies in 
existing stormwater facilities and management practices. The development of effective design requires a 
comprehensive understanding of flooding together with the stormwater infrastructure and system. Although 
one-dimensional (1-D) hydraulic modelling has been extensively used and proven to be useful for flood 
management but the capability is basically limited to water profiles and some hydraulic variables. For specific 
analyses such as overland flow in floodplains, determining direction and rate of flood propagation, flood 
inundation extent, flood depths and duration requires a more sophisticated two-dimensional (2-D) model and 
modelling techniques. With the advent of geographic information system (GIS), digital terrain model (DTM), 
and advancement in hydraulic modelling software, 2-D modelling have begun to be adopted for analyses 
requiring flood plain mapping and the analysis of overland flows. Besides, recent developments in flood 
modelling have led to the concept of coupled hydraulic model (Barnard et al, 2007).  

The study area is at Jalan Sibiyu areas, located at southeastern of Bintulu town. The drainage at certain 
stretches of Jalan Sibiyu is subject to flash flooding. The flooding caused traffic disruption, damages to 
properties and relocation of people. Considering the frequent occurrence of flash flooding, a study had been 
initiated by agency to investigate the flooding phenomenon along Jalan Sibiyu and proposed mitigation 
measures.  

The purpose of this paper is to illustrate the successful application of a coupled XP SWMM 1D and XP-2D 
model using XP software in modelling the flood plain, which in turn provides a better understanding of the 
actual flood behaviour at the Study area.  
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2 STUDY AREA  
Jalan Sibiyu is located at the southeastern side of Bintulu, extending from the junction of Jabatan 

Pengangkutan Jalan (JPJ) area and Jalan AH150, until the junction of Kg Baru and Jalan Kemena for about 
5.5 km. Drainage system can be found along both sides of Jalan Sibiyu (‘Study area’) (refer Figure 1). At 
certain stretches, the drainage is subjected to flash flooding after a storm. The study area falls within the 
southern portion of the Sg Sibiyu catchment. Sg Sibiyu drains into Btg Kemena, where the confluence 
between Sg Sibiyu and Btg Kemena is just 3 km from the Btg Kemena river mouth with South China Sea.  

The study area is having a catchment area of 783 ha, with left and right side of Jalan Sibiyu having 
catchment area of 432.4 ha and 350.6 ha respectively. As shown in Figure 1, right side of Jalan Sibiyu 
(looking towards downstream) is mostly developed; about 50% of the areas have been developed into 
residential areas, followed by 40% of the areas being opened up and the remaining areas are still covered by 
bush. On the other hand, left side of Jalan Sibiyu is still not yet developed; about 40% of the areas are opened 
up and the remaining areas are still covered by bush. Figure 2 shows the terrain of the Study Area.  

There are a total of 9 major drainage outlets along Jalan Sibiyu (refer Figure 3). The urban drainage 
network along Jalan Sibiyu comprises an estimated total of 77 main and secondary drains. As the study area 
is semi-developed, 50% of the drains are concrete lined while the remaining is earth lined.  

Outlet 1 is the most upstream outlet discharging into Sg Sibiyu, about 9.2 km from the confluence 
between Sg Sibiyu and Btg Kemena. While Outlet 9 is the most downstream outlet discharging into Sg Sibiyu, 
about 870 m from the confluence between Sg Sibiyu and Btg Kemena. As Outlet 8, 9 and 10 are located quite 
near to the confluence between Sg Sibiyu and Btg Kemena, backflow from Btg Kemena due to fluctuation of 
tide can be felt at these locations.  

 

 
Figure 1. Project location – Jalan Sibiyu. 
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Figure 2. Terrain of study area. 

 

 
Figure 3. Present drainage network along Jalan Sibiyu. 
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3 WHY TWO-DIMENSIONAL MODELLING  

In Malaysia, most stormwater studies are carried out using the traditional method that is 1-D modelling 
technique. In 1-D hydraulic modelling, floodplain are usually modelled as wide uniform sections that are linked 
to nodes of the network. Although the results seem to be practicable, this traditional technique is still unable to 
model accurately the phenomenon of overspilling as well as the magnitude, extent and rate of flood wave 
propagation over the flood plain. Even though engineers are aware of the advantages of 2-D hydraulic 
modelling in simulating flood plains, owing to the lack of reliable survey information, 2-D hydraulic modelling is 
still not commonly being adopted (Lim and Cheok, 2009).  

With the advent of GIS, survey technologies such as Light Detection and Ranging (LiDAR), availability of 
DTM data, and advancement in hydraulic modelling software, 2-D modelling have begun to be adopted for 
analyses requiring flood plain mapping and the analysis of overland flows. The combination of all these factors 
has enabled the present study to be carried out using 2-D hydraulic modelling approaches (Shen et al, 2015).  

 
4 METHODOLOGY  

The study was carried out using XP SWMM software. XP SWMM is a one-dimensional link-node model 
that performs hydrological and hydraulic analysis suitable for urban stormwater systems. XP 2D is an overland 
flow module, of which coupled with the 1-D capability of XP SWMM, allows simulation of flows in and out of 
urban drainage networks and river systems. It provides a useful tool to predict the extent, depth, velocity and 
duration of flooding. The model was setup as a combination of 1-D network domains linked to 2-D domains as 
a single model. 

Under this study, 12 models were setup according to the numbers of outlets exist in the study area. Each 
model comprised a 2-D overland flow model and a 1-D drainage model. They are coupled together to form a 
complete 1-D / 2-D overland flow model. Each outlet has its own sub-catchments. The sub-catchments were 
defined and entered into a rainfall runoff model. Time Area method embedded in XP SWMM 1-D model was 
adopted to derive the design hydrographs. The model was run to estimate the 50-year Annual Return Interval 
(ARI) design flows under future land use and developed condition. 

Topographic data is required for 2-D modelling. Thus, LiDAR data with a vertical accuracy of about 0.15 
m was procured in this Study. XPSWMM uses a triangulated irregular networks (TIN) for obtaining elevation 
data for the 2-D grid. Various grid sizes were attempted during model setup to arrive at an optimum resolution. 
Smaller grid resolution requires much longer computation duration whereas coarser grid resolution would 
produce inaccurate inundation simulation results (Barnard et al, 2007). Thus, grid spacing of 20 m x 20 m was 
adopted in this Study after considering the computation duration, result accuracies as well as capability of the 
XP2D software.  

The model parameters and values adopted for the 2-D modelling in this Study are tabulated in Table 1 
below.  

 
Table 1. XP2D Model Parameters and Adopted Values. 

Parameter and Criteria Value 
Manning’s Roughness for channel (earth) 0.03 
Manning’s Roughness for channel (concrete) 0.015 
Manning’s Roughness for floodplain 0.05 
Eddy viscosity (m2/s) Use Smagorinsky formulation 
XP2D flooding depth (m) 0.002 
XP2D drying depth (m) 0.002 

  
5 RESULT AND DISCUSSIONS 

Upon successful completion of all the model simulations, the outputs from the simulations in term of flood 
extent and depth were extracted and discussed. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print) 3935



          
 

 

 
Outlet 1 

 
Outlet 2 

 
Outlet 3 

 
Outlet 4 

 
Outlet 5 

 
Outlet 6 

 
Outlet 7 

 
Outlet 8 

 
Outlet 9 

Figure 4. Inundation extent and depth for each outlet. 
 
Figure 4 shows the inundation extent and depth at each outlet under 50-year ARI flow of future and 

developed condition. Sizable areas are inundated under 50-year ARI flooding condition. Despite the sizeable 
inundated areas, the flooding depth is less than 1 m at most of the areas. The model results also revealed the 
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deficiencies and interconnection of drainage system along Jalan Sibiyu. During flooding, certain stretches of 
Jalan Sibiyu will be cut off due to overspilling of floodwater.   

 

 

 
Figure 5. Flooding extent within outlet 1 catchment and its terrain. 

 
Figure 5 shows the flooding extent within the outlet 1 catchment as well as its topography. From the 

figure, Jalan Sibiyu junction is lower and depressed towards the middle stretch of the road. As the culvert 
crossings across Jalan Sibiyu are inadequate to convey the stormwater, stormwater will overspill and flood 
Jalan Sibiyu.    

The flood photo taken during the flash flood on Jan 2014 could well indicate that this stretch of road is 
depressed and compounded by inadequate conveyance capacity, floodwater overspilled to the surrounding 
area.  

 

  
Figure 6. Flooding extent within outlet 6 catchment. 

 
Figure 6 shows the flooding extent within the outlet 6 catchment. Similar to Outlet 1, Jalan Sibiyu junction 

is lower and the existing crossings are unable to convey the stormwater effectively. During the occurrence of 
flash flood on Jan 2014, this location had been flooded. This is consistent with the model prediction where this 
area is the overspilling points.    
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Figure 7. Maximum water level profile under present condition with 50 year ari future landuse flow. 

 
Figure 7 shows the results of model simulation using 1D hydraulic model. The maximum water level is as 

presented in longitudinal profile. From the profile, overspilling locations where maximum water level exceeded 
the ground level could be identified. On the other hand, the 2D model results not only show the overspilling 
point, but also show the flooding extent, flow direction and flood propagation rate.   

From this study, it is truly shown that pertinent flood info like maximum water level, discharge, flooding 
depth as well as duration can be obtained via 1D hydraulic model. However, such flood info could not be 
insufficient to illustrate the flooding phenomenon graphically. In contrast, 2D hydraulic model can provide 
additional info to the flooding phenomenon in term of flood inundation extent, flow direction as well as flood 
propagation rate which could not be performed by 1D hydraulic model capability only.   

The combined 1-D / 2-D modelling capabilities in the XP SWMM 2D package allow this study to 
undertake more detailed investigations of the flooding phenomenon of the drainage system along Jalan Sibiyu 
and identify areas of over flows before arriving at mitigation measures to resolve the flash flooding. 

 
6 CONCLUSIONS  

Due to the advancement of technologies, the use of 2-D modelling is expected to become a normal 
engineering practice for flood assessment in the future. 2-D modelling is capable of providing crucial 
information such as direction and rate of flood propagation, flood inundation extent and depths as well as 
inundation time across the studied flood plains. 

Based on the analysis and results presented in this paper, it is concluded that although 1-D steady and 
unsteady flow models are the dominant tools for the design and analysis of drainage systems, for flood 
mapping, 2-D models are a better option to model complex flow patterns on floodplains. The presentation of 
modelling results in 2-D allow a more detailed investigations of the flooding phenomenon.  

Although the results of this study presented here have not been verified with flood events, the work 
demonstrates the features and powers of 1-D / 2-D linked hydrodynamic modelling capabilities.  
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ABSTRACT 
 
A deep neural network (DNN) model for runoff analysis was developed. The model consists of one input layer, 
three middle layers, and one output layer. In order to avoid the gradient vanishing, the layer-wise pre-training 
by the auto-encoder was employed. For the problem of overfitting, the number of training run is limited based 
on the early-stopping technique. The model validity was examined through runoff analysis. The model predicted 
the daily river discharge from the daily rainfall. The study area was at Shigenobu River watershed, Ehime 
prefecture, Japan. The daily discharge and rainfall data were obtained at the observatory of Deai and 
Matsuyama, respectively. The training (calibration) period was from 2001 to 2010, and prediction (verification) 
period was from 2011 to 2013. To assess effectiveness of the model, calibration and verification results were 
compared with those of a hierarchical neural network (HNN) model, which consisted of the same number of 
layers without employing the layer-wise pre-training by the auto-encoder. From the results, it was found that the 
statistical performance indices of DNN model in verification period is better than that of HNN model.  
 
Keywords: Runoff analysis; neural network; deep learning. 
 
 
1 INTRODUCTION 
 Runoff analysis is a crucial technique for the use and management of water resources, and has been 
implemented by use of a runoff model like a conceptual model or physical model. However, it is difficult to 
represent the relation between rainfall and discharge because of its high nonlinearity. 
 For the representation of nonlinearity, models using artificial neural network (ANN) are useful. Hsu et al. 
(1995) applied a hierarchical neural network (HNN) model to runoff analysis and demonstrated its effectiveness 
by comparing with the linear ARMAX (autoregressive moving average with exogenous inputs) time series 
approach or the conceptual SAC-SMA (Sacramento soil moisture accounting) model. Minns and Hall (1996) 
implemented runoff analysis using HNNs in a hypothetical catchment and evaluated the performance of ANNs. 
Dawson and Wilby (1998) developed an HNN model and applied it to flow forecasting in two rivers. Sajikumar 
and Thandaveswara (1999) developed a monthly rainfall-runoff model using an HNN and investigated its 
performance by comparing with functional series models. Abe et al. (2000) developed an HNN model and 
applied to long-term (10 years) daily runoff analysis. Kiyama et al. (2003) developed an HNN model to predict 
flood discharge and discussed its predictability or applicability.  
 Previous works showed applicability or effectiveness of HNN models for runoff analysis. To obtain more 
accurate representation of the relation between rainfall and discharge, there are some improvements such as 
increase of layers and computational nodes (neurons), and so on. However, increase of layers and/or nodes 
causes problems such as "vanishing gradient" and "overfitting" in the typical ANN such as HNN. Recently, deep 
learning methods were proposed to overcome those problems (LeCun et al., 2015; Schmidhuber, 2015). Izumi 
et al. (2016) developed a deep neural network (DNN) model for runoff analysis. The model consists of one input 
layer, two middle layers, and one output layer. In order to avoid the vanishing of the gradient, the layer-wise 
pre-training by the auto-encoder was employed (Bengio, 2006). For the problem of overfitting, the number of 
training run is limited based on the early-stopping technique (Kamishima et al., 2015). The model effectiveness 
was shown by comparing the DNN and HNN model output in terms of the reproducibility and predictability for 
observed data. 
 In this study, DNN model developed by Izumi et al. (2016) was extended to the model with deeper layers 
and its performance or effectiveness was assessed from the comparison of a HNN model with the same number 
of layers and nodes. 
 
2 DNN MODEL 
 ANN is a nonlinear mathematical model which imitates biological nervous systems. A representative neural 
network model is HNN model, which is a three-layer feed forward neural network model consisting of input, 
hidden and output layers. DNN is an HNN which has more than two hidden layers. Generally, increase of layers 
leads to not only acquisition of more complicated representation but also problems of “vanishing gradient" and 
"overfitting”. DNN is also designed to avoid these problems by incorporated the layer-wise pre-training by the 
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auto-encoder and the early-stopping technique (LeCun et al., 2015; Schmidhuber, 2015; Kamishima et al., 
2015). 
 In this study, a DNN model for daily runoff analysis was developed. The model is an extended one 
developed by Izumi et al. (2016) and consists of one input layer, three middle layers, and one output layer 
(Figure 1). The output in j-th layer (Middle Layer 1 in Figure 1) is described as follows: 
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where, f(uj) is output value in j-th layer, xi is input in j-th layer, wij is weight coefficient,  is threshold value, n is 
the number of node in i-th layer. The training procedure is used the error backpropagation algorithm (Rumelhart 
et al., 1986). In the algorithm, the weight coefficients and threshold values are adjusted based on errors between 
resultant outputs from the network and expected outputs (teacher signals).  
 In order to avoid the gradient vanishing, the layer-wise pre-training by the auto-encoder is employed 
(Bengio, 2006). The auto-encoder consists of three layers, i.e. input, middle, and output layers. The number of 
node in output layer was set as same as that in input layer. The auto-encoder learns to output or reproduce the 
input signals. The weight coefficients and threshold values after learning were used as initial values of those in 
DNN model. Examples of the auto-encoder are shown in Figure 2. Figure 2(a) shows the auto-encoder based 
on the Input Layer and Middle Layer 1, in which initial values of wij was determined. Figure 2(b) also shows the 
one for determining initial values of wjk. For the problem of overfitting, the number of training run is limited based 
on the early-stopping technique (Kamishima et al., 2015).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. DNN model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Auto-encoder 
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3 MODEL ASSESSMENT 
 
3.1 Study area 
 The study area was at Shigenobu River basin, Ehime prefecture, Japan as shown in Figure 3. Shigenobu 
River is 36 km length and flows into Seto Inland Sea. The basin area is 445 km2 and 70% of the basin is covered 
by forest. The alluvial fan, Dogo Plain, is formed in the downstream basin. The average annual rainfall in the 
plain is approximately 1,300 mm/year, which is less than that of Japan (1,700 mm/year).  
 The daily discharge and rainfall were observed at the observatory of Deai (N33° 48’ 21’’, E132° 43’ 31’’) 
and Matsuyama (N33° 49’ 18’’, E132° 44’ 22’’), respectively. Those data can be obtained from Water Information 
System (Ministry of Land, Infrastructure, Transport and Tourism). The observed data of daily discharge and 
rainfall were used for teacher signal and input signal, respectively.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Study area 
 
3.2 Conditions of runoff analysis 
 Runoff analysis outputs (reproduces or predicts) daily discharge from daily rainfall. The daily discharge 
data was used as the teacher signal. Generally, daily discharge depends on daily rainfall before several days. 
Thus, daily rainfall before 10 and 15 days were used as input data based on the hyeto and hydro graph at the 
observatory of Matsuyama and Deai. While the number of computational nodes in three middle layers can be 
arbitrary determined, those are set as two cases: (1) seven, five and three, and (2) five, five and five because it 
is beyond the scope of this study. 
 In order to assess effectiveness of the DNN model, the calibration and verification results were compared 
with those of a HNN model which has the same number of layers as the DNN model. The training (calibration) 
period was set from 2001 to 2010, and thus the number of datasets were 3,640 for the model that has 10 input 
nodes and 3,635 for 15 nodes. The prediction (verification) period was from 2011 to 2013. The parameter of 
learning rate was set to be a constant value of 0.75. The number of learning run of DNN and HNN model was 
set to be 10,000. In DNN model, the number of the pre-training by the auto-encoder was set to be 5,000.  
 
3.3 Statistical performance indices 
 In this study, the model performance was assessed by three statistical indices: the correlation coefficient 
(R), the coefficient of efficiency (E) proposed by Nash and Sutcliff (1970), and the normalized root mean square 
error (NRMSE). 
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where Qobs(t) is the observed discharge at time t, Qcom(t) the reproduced or predicted discharge at time t, N the 
total number of discharge data, Qm

obs the mean observed discharge, Qm
com the mean reproduced or predicted 

discharge. 
 
4 RESULTS AND DISCUSSIONS 
 
4.1 Calibration results 
 Scatter diagrams of the calibration results are shown in Figure 4, and three statistical indices are 
summarized in Table 1. The correlation coefficients (R-values) and coefficient of efficiencies (E-values) are 
more than 0.870 and 0.754, respectively. The normalized root mean square errors (NRMSE-values) are less 
than two. 
 
4.2 Verification results 
 As verification results, time-series of predicted and observed discharge are shown in Figure 5, and three 
statistical indices are summarized in Table 2. R-values and E-values are smaller than those of calibration results. 
It can be seen that R-values are 0.717 at most, E-values include negative ones and NRMSE-values are more 
than two. 
 

Table 1. Statistical performance indices of DNN and HNN model in calibration results 
Model R E NRMSE 
DNN 

10-7-5-3-1 
0.880 0.766 1.574 

HNN 
10-7-5-3-1 

0.923 0.837 1.315 

DNN 
10-5-5-5-1 

0.910 0.816 1.394 

HNN 
10-5-5-5-1 

0.920 0.833 1.329 

DNN 
15-7-5-3-1 

0.921 0.838 1.310 

HNN 
15-7-5-3-1 

0.937 0.865 1.194 

DNN 
15-5-5-5-1 

0.870 0.754 1.614 

HNN 
15-5-5-5-1 

0.939 0.870 1.173 

 
Table 2. Statistical performance indices of DNN and HNN model in verification results 

Model R E NRMSE 
DNN 

10-7-5-3-1 
0.717 0.390 2.115 

HNN 
10-7-5-3-1 

0.591 0.283 2.845 

DNN 
10-5-5-5-1 

0.611 -0.082 2.696 

HNN 
10-5-5-5-1 

0.622 0.182 2.709 

DNN 
15-7-5-3-1 

0.621 0.036 2.520 

HNN 
15-7-5-3-1 

0.610 -0.150 2.320 

DNN 
15-5-5-5-1 

0.687 0.091 2.414 

HNN 
15-5-5-5-1 

0.432 -0.386 2.862 
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(a) DNN model (10-7-5-3-1) (b) HNN model (10-7-5-3-1) 

(c) DNN model (10-5-5-5-1) (d) HNN model (10-5-5-5-1) 

  
(e) DNN model (15-7-5-3-1) (f) HNN model (15-7-5-3-1) 

  
(g) DNN model (15-5-5-5-1) (h) HNN model (15-5-5-5-1) 

Figure 4. Scatter diagrams of calibration result 

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print) 3943



  
          

  

 

Figure 5. Verification results 
 
4.3 Discussions 
 From the calibration results, we can see the linear relationship between the observed and computed values 
in Figure 4 and R-values. E-values were more than 0.754 and it means that the runoff analysis models have 
high reproducibility. All performance indices showed that the reproducibility of HNN model is higher than that of 
DNN model. 
 From the verification results, predictability of both DNN and HNN model is low. Specifically, there are failures 
in prediction of peak discharge (Figure 5). The performance indices showed that the predictability of DNN model 
is higher than that of HNN model expect for the model of 10-5-5-5-1. 
 The comparison results that reproducibility of DNN model is lower than that of HNN model and predictability 
of DNN model is inversely higher indicate that DNN model is prevented from falling into the overfitting. There is 
no clear tendency in network structure such as the number of computational nodes in each layer. 
 

 

 
(a) DNN model (10-7-5-3-1) (b) HNN model (10-7-5-3-1) 

  
(c) DNN model (10-5-5-5-1) (d) HNN model (10-5-5-5-1) 

  
(e) DNN model (15-7-5-3-1) (f) HNN model (15-7-5-3-1) 

  
(g) DNN model (15-5-5-5-1) (h) HNN model (15-5-5-5-1) 
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5 CONCLUSIONS 
 A DNN model for runoff analysis was developed. Comparing with the application results of HNN model, 
performance or effectiveness of DNN model was assessed. To clarify the reproducibility and predictability, three 
statistical indices are shown. From the results, it was found that the reproducibility of DNN model is lower than 
that of HNN model and the predictability of DNN model is inversely higher, and it indicates that DNN model is 
prevented from falling into the overfitting. 
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ABSTRACT  
 
Penchala River is one of the longest rivers in Selangor, Malaysia and is under threat due to effluent disposals 
mainly from commercial and industrial sector near Petaling Jaya area. As per the DOE water quality index 
classification, the river is not acceptable as Class II River and has since surpassed as Class IV river at some 
parts of the river. Due to the outcome of effluent disposition in this river, modelling of one dimensional steady 
state water quality model is carried out by adapting QUAL2Kw. In order to minimize the watershed load, 
simulation of model involves simulating water quality data, temperature and hydraulics data to calculate the 
required reduction of pollutant loads to achieve or maintain the river at Class II. Several BMPs are then 
proposed for pollutant loads reduction. Analysis of the water quality model and manual calculation of TMDL 
indicated that NH4, TP, TN, COD, NO3, and TSS loads should be reduced by 80%, 70%, 70%, 60%, 89%, 
52% respectively. 

 
Keywords: TMDL; pollutant load; BMP; penchala river. 

 
 

1 INTRODUCTION   
 Based on the recent Malaysia Environmental Quality Report (2014), Biochemical Oxygen Demand 
(BOD), Ammonical Nitrogen (NH3-N) and Suspended Solids contributes prominently in terms of river pollution. 
From the report, incompetency of the treatment of effluent from agricultural and industrial sectors mainly 
attributes to a high BOD. The report also stated that the main causes of NH3-N are derived from livestock 
farming and domestic sewage while inadmissible earthworks and site clearing activities primarily contributed 
to an increasing Suspended Solid in domestic rivers.  
 Malaysia's River Quality Trend is characterized; "out of the 43 polluted rivers, 25 rivers were classified as 
Class III, 18 rivers as Class IV. In terms of BOD, 10 rivers were classified as Class IV and 33 rivers as Class 
V. In terms of NH3-N, three rivers were classified as Class II, two as Class III, 14 rivers as Class IV and 24 
rivers as Class V. In terms of SS, 24 rivers were classified as Class I, 14 rivers as Class II, and five rivers as 
Class III (Department of Environment, 2014). To improve the conditions of most rivers in Malaysia, a few 
actions are needed to be taken. The first action needed to be done is to determine the different types of 
pollutant loads in the river. Based on this study, in order to execute this is by developing a water quality 
model. A steady state flow modeling software called QUAL2Kw is used. Parameters such as total nitrogen, 
total phosphorus, Biochemical Oxygen Demand (BOD) and Dissolved Oxygen is used as input data for the 
modeling based on observation data acquired from UNITEN's database. 
 This study also proposes the most suitable BMPs which act as an alternative to improve the water quality 
of the river (Lung, 1993). Several BMPs were introduced and the ability of several different types of BMPs is 
regulated based on their ability to reduce the amount of pollutant loads. To make sure that the study area 
receives the most suitable BMP, an analysis of the percentage reduction must be executed. 

  
2 METHODOLOGY  

 
2.1 Introduction 
 In order to perform the water quality modeling, some of the default system ID needed to be changed. 
Components such as the river name, the file location of the output should be modified.  For the simulation and 
output options, an Euler integration method was used, while the pH solution method was Brent method. In 
order to simulate hyporheic exchange and pore water quality, the simulation and output option was modified to 
be on level. 
 
2.2 Configuration on  ID system 
 Figure 1 show the input data of headwaters which consist of parameters such as temperature, pH, DO, 
TN, and CBOD. Several of the parameters were collected from a prehistoric observation data from UNITEN's 
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database of Penchala River from the year 1995 to 2010. The input data shown in Figure 2 was inserted for 
every one hour of observation data every day for 7 days. Headwaters input data was needed in order to 
execute the water quality model. Some of the data parameters such as conductivity, inorganic solids, organic 
phosphorus, and pathogen were default data that was specified in the QUAL2Kw model. These default data 
were eventually modified until the output data, which was in the form of a graph is in sync with the line graph 
of maximum and minimum output data of several parameters. 
 

 
Figure 1. The regulated headwaters data obtained from one week observation data for every one hour. 

 
2.3 Input water quality data 
 Figure 2 shows the input data of minimum and maximum water quality data, which consists of 
parameters such as DO, CBOD, NH4, NO3, Phosphorus and pH. These data were collected from the 
observation data. There were different input data based on the different distance of the river. Minimum and 
maximum water quality data were input based on different parts of distance of the river. From many data of 
water quality obtained from the prehistoric observation data, the least amount of load of each parameters 
were chosen to be input for water quality minimum data while the highest amount of load of each parameters 
were chosen as the input for maximum data.  
 

 

 
Figure 2. Water quality minimum and maximum input data. 
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2.4 Configuration on temperature data 
 Figure 3 shows the distances of first modified model to suit the distance of the total 10 km length of 
Penchala River that was used in this study area. From observation data at a distance of 0.42 km, the mean 
temperature data was at 14.9 °C. At distance of 2.83km, the mean temperature data was at 16.13 °C. At 
distances of 5.08 km, 6.39 km and 9.6 km of the river the mean temperature data was 15.66, 17.2, and 
14.9°C respectively. The temperature data had to be changed and modified from the default data to the 
observation data. The observation data collected from UNITEN's database were basically the data used as 
most of the input data in this model. 
 

 
Figure 3. Modified temperature data. 

 
3 RESULTS  
 The maximum amount of pollutant loads were considered for each output parameter, in order to calculate 
the amount of percentage of reduction and determine the TMDL. As seen in Table 1, NH4 has the maximum 
amount of 5 mg/l load after simulation of the model. For BOD, TSS and DO, the maximum simulated pollutant 
loads were 23 mg/l, 14 mg/l and 12.5 mg/l respectively. In terms of total phosphorus and total nitrogen, the 
loads were at 100 mg/l and 23 mg/l respectively. The last two parameters simulated in this model were pH 
and NO3. Maximum NO3 load was at 25 mg/l and pH was 9 respectively. 
 

Table 1. Simulated Result From QUAL2K. 
Parameters Simulated Pollutant Loads 

From Qual2k Modelling 
NH4 5 mg/l 
Biochemical Oxygen 
Demand (BOD) 

23 mg/l 

Total Suspended Solids 
(TSS) 

14mg/l 

Dissolved Oxygen (DO) 12.5 mg/l 
Total Nitrogen (TN) 100 mg/l 
Total Phosphorus (TP)  23 mg/l 
pH 9 
NO3 25 mg/l 

 
3.1 Dissolved Oxygen 
 The simulated graph of the maximum load was 6.2 mg/l when located at 5-kilometre mark of the study 
area. DO load was progressively decreasing as the distance of the river increases. Chin (2006) states that the 
increase of BOD from the river affects the decrease of DO because DO is consumed by bacteria when large 
amounts of organic matter from sewage or other discharges were present in the water. The observed DO or 
pH may be expected to be somewhat higher than the daily average that the model predicts for the data 
collected in the afternoon (Chin, 2006). Pelletier and Chapra (2005) states that the DO levels decreases 
during the night hours because of lower rates of photosynthesis by river plants. The decrease of dissolved 
oxygen was apparent during low flow periods. The impacts of low dissolved oxygen concentrations will 
eventually lead to an unbalanced ecosystem in the river. 
 
3.2 Ammonia  
 From Table 4, the maximum simulated load was 5 mg/l and at the 6 km mark. The amount of NH4 load 
increases as the distance increases. When ammonia reaches the soil surface, it usually reacts with water in 
the soil. From this reaction, it will converted into its ionic form, ammonium (NH4+) and will be absorbed in to 
the soil (Kunwar, 2004). Ammonia usually comes from domestic, industrial or agricultural pollution, primarily 
from fertilizers, organic matter or fecal matter (Kunwar, 2004). Ammonia levels in excess from the 
recommended limits may harm aquatic life. Ammonia toxicity is thought to be one of the main causes of 
unexplained losses in fish hatcheries.  Although the ammonia molecule is a nutrient required for life, excess 
ammonia may accumulate in the organism and cause alteration of metabolism or increases in body pH. 
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3.3 Nitrate  
 The simulated graph of the maximum load was at 25 mg/l and located from the start point of the river to 
5.8 kilometer mark of the study area. Nitrates also come from the earth.  Soil that contains organic matter will 
contain nitrogen compounds.  Just like the ammonia in water, these nitrogen compounds in the soil are 
converted by bacteria into nitrates (Owens et al., 1964). In this study, sources of excess nitrates come from 
human activity. The source of excess nitrates can usually be traced to agricultural activities, human wastes, or 
industrial pollution near the study area. 
 
3.4 Total Nitrogen 
 At distance of 6 km of the study area, the maximum pollutant load after the simulation of the graph was at 
a load of 100 mg/l. The increase of Nitrogen can lead to overstimulation of growth of aquatic plants and algae. 
Excessive growth of these organisms, in turn, can clog water intakes, use up dissolved oxygen as they 
decompose, and block light to deeper waters (Chin, 2006). Porcella and Soresson (1980) suggested that the 
drop in respiration efficiency of fish and aquatic invertebrates can occur, leading to a decrease in animal and 
plant diversity, and affects our use of the water for fishing, swimming, and boating. 
 
3.5  Total Phosphorus  
 At distance of 6.2 km of the study area, the maximum pollutant load after running the model was at 23 
mg/l. Phosphorus starts to increase at distance 6 km of the total length of study area of Penchala River. 
Phosphorus gets into water due to urban and agricultural settings. At 4 to 8 km distance of river, the present of 
residential areas was distinct. The highest load of TP was at the point distance of 6 km to 8 km. Phosphorus 
tends to attach to soil particles and, thus, moves into surface-water bodies from runoff. Phosphorus can also 
migrate with groundwater flows. 
 
3.6 Total Suspended Solids  
 At distance of 6.2 km of the study area, the maximum pollutant load after the simulation of the graph was 
at a load of 14 mg/l. The presence of car and machinery factories along the distance of 6 km to 10 km give 
rise to higher loading of TSS at these distances. The largest amounts of solids were usually generated from 
construction activities, agriculture, unpaved surfaces, and waste management (Chin, 2006). 
 
3.7 Biochemical Oxygen Demand 
 The maximum pollutant load after the simulation of the graph was at a load of 12 mg/l due to which the 
dissolved oxygen level along the river was less than minimum permissible limit. Due to the increment of 
pollutant loads such as TP, NH4, TN and TSS, the loads instantly effects the BOD of the river making the load 
to also gradually increase. In such circumstances, it is because the sewerage from commercial and residential 
areas along the river has poor waste management (Owens et. al., 1964). The increament of BOD may due to  
urban runoff that carries wastes from streets and sidewalks; nutrients from lawn fertilizers; leaves, grass 
clippings, and paper from residential areas, which increase oxygen demand (Liu et al., 2008). 
 
3.8 pH 
 The input pH was at its maximum at pH 9. At distance of 6 km of the study area, the maximum pH 
recorded after the simulation of the graph was at a pH of 8. The results start decreasing at 6.2 km distance. 
The decreasing in pattern may be due to constant human activity and a large portion of industrial area in the 
geographical scope. Liu et al. (2008) suggested that the level of pH decreases due to release of CO2 in water 
column. 
 
3.9 Pollutant Load Allowable 
 To determine whether the pollutant load reached the target goal, the pollutant loads were compared 
between the maximum allowable load and the loads after reduction. The maximum allowable load for different 
pollutant parameters were obtained from WQI table (DOE). This means that the amount pollutant load 
achieved must be less than the maximum allowable load and also attain the required water quality standard of 
Class II. Before the pollutant load meets its target goal, the maximum allowable load must be determined. 
Different BMPs have different pollutants load reduction capabilities. After determining the amount of pollutant 
load reduction, different BMPs can contribute. The pollutant loads derived from the water quality model was 
multiplied with the percentage of the reduction. The total was considered to be the pollutant load after 
reduction. The pollutant load was achieved the target goal when the pollutant load obtained after going 
through a BMP reduction was less than the maximum allowable load.  
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Table 2. The summary of BMPs types and the total number of the pollutant loads that attain a required WQS 

after load reduction. 
Four staged wetland Floating Constructed wetland Bio retention System 

Type of pollutant 
load 

Achieve required 
Water Quality 

Standard 
(YES/NO) 

Type of 
pollutant 

load 

Achieve required 
Water Quality 

Standard 
(YES/NO) 

Type of 
pollutant 

load 

Achieve required 
Water Quality 

Standard 
(YES/NO) 

NH4 NO NH4 NO TSS YES 
NO3 YES NO3 YES TP NO 
TN YES BOD NO TN NO 
TP NO COD YES NO3 NO 

CBOD YES TSS YES CBOD NO 
Total number of 

pollutant loads that 
attain a required 

WQS 

3  3  1 

 
 Table 2 represents the summary of four staged constructed wetland, floating constructed wetland and bio 
retention system with the type of pollutant loads from the different BMPs from this study. It also summarizes 
whether the pollutant load parameters achieved the target goal or not. The pollutant load that does not 
achieve the target goal is the ones that still exceed the maximum allowable load of the river even after 
reduction has been done. The pollutant loads that do meet the target goal had successfully been reduced to 
the amount of load without exceeding the maximum allowable load. 
 
4 CONCLUSION 
 Based on the observation data and the results of the simulation of water quality modeling using 
QUAL2Kw, most of the pollutant loads in the Penchala River exceeded the maximum allowable load or also 
known as the total maximum daily load. To mitigate this situation, a storm water treatment facility can be 
introduced near the river. Three types of storm water treatment facilities are also proposed in this study. The 
uses and benefits of each and every storm water treatment facility are evaluated in reducing the amount of 
pollutants. From the observations and analysis, the four stage wetland is the best at reducing the pollutant 
loads. Most of the pollutant loads achieved reduction even when there was some load that still exceeds the 
allowable load. Comparing to the floating constructed wetland, the reduction efficiency of the four stage 
wetland is similar. In a situation where land or space is limited near the river, floating constructed wetland is 
used as the next best option.  
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ABSTRACT 

The lack of hydrological data records, and in particular of discharge measurements, represents, in the arid 
and semi-arid regions, a critical aspect that many authors, engineering firms and organizations have faced in 
the last few years, in order to define reliable methods and equations for the estimation of the peak discharge 
from drainage basins, applicable to infrastructures, flood defense and groundwater management projects. The 
present article shows the main results of a study conducted during the design of The Saudi Landbridge 
Railway Project (client: S.A.R.) for an elevated number of watersheds in the Central Regions of the Kingdom 
of Saudi Arabia. In these areas, the only available rainfall data with acceptable time interval of records and an 
adequate spatial distribution, are the daily cumulative rainfall depths. Suitable peak discharge estimation 
methodologies with this type of data were investigated; particularly, three different methods for the Peak 
Discharge Estimation related to a Return Period of 1 in 100 year ARI (Average Recurrence Interval) were 
considered: Regression Equation (Saudi Ministry of Transportation), Talbot Equation, and  HEC-HMS 
software (using SCS method). Since it is the only method that takes into account both the actual rainfall 
phenomenon and the ground features through the so-called Curve Number (CN), HEC-HMS method has been 
considered as a base reference in comparison with the other methods. The suitability of this method for the 
territory of the KSA has been verified through a calibration analysis, using available local information and 
existing studies. The comparison between the different methodologies, for different drainage basin dimensions 
and for different locations within the area of study, showed that the Talbot and the Regression Equations are 
affected by a considerable error in the estimation of peak discharge; conversely, the HEC-HMS method 
provides reliable estimations of the Peak Discharge for engineering purposes in these zones.  

Keywords: Kingdom of Saudi Arabia; hydrologic analysis; peak discharge; arid zones hydrology. 

1 INTRODUCTION 
The estimation of peak discharge of hydrographic basins is a primary element for the hydraulic design of 

drainage and flood protection structures. For the transport infrastructures, such as railroads and highways, 
generally crossing a relevant amount of watersheds with different geological, morphological and pluviographic 
characteristics, the choice of the method that has to be applied for the peak flow calculation of each basin, 
could constitute an important challenge. It has been widely stated that the major limitation of the development 
of arid zone hydrology is the lack of high quality observations (Wheater, 2002), where suitable recordings are 
not available along the alignment, especially in desert non-urban areas, it is hence necessary to investigate 
the most appropriate method that optimizes the collected data and leads to the best performance in terms of 
safety and economic sustainability of the project. 

For this study that was performed for the Saudi Landbridge Railway Project (Section 2), the only data 
obtained for a suitable spatial and temporal distribution were the 24-hours cumulated rainfall depths. In fact, 
especially for the gauging stations located in remote areas, the new generation pluviographs allowing the 
measurement of short rainfall durations were recently installed and, in most cases, need maintenance. Thus, 
due to their short operation period, these pluviographs with difficulty in providing rainfall data for an adequate 
statistical analysis. 

As a consequence of the above mentioned considerations, the method to estimate the peak discharge 
should meet the following requirements: 

 Reliable results with the available data.
 Not excessive overestimations of the peak discharge (to limit the dimensions and hence the costs of

the structures)
 Easy application (because of the huge number of basins to study)
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Different methods can be adopted to estimate the peak discharge, and can be divided into two following 
main categories: 

 Methods that do not require rainfall data analysis;  
 Methods that require rainfall data analysis; 
The first group includes the Modified Talbot Formula (Wilson Murrow Consultant, 1971) and the 

Regression Equations that have been widely used for ungauged basins in the Kingdom of Saudi Arabia. The 
second group includes the SCS-DUH (Dimensionless Unit Hydrograph) Method (Mc Cuen, 1982) and the 
Rational Method (Mc Cuen, 2002). The SCS method has been implemented using the HEC-HMS software 
(U.S. Army Corps of Engineers, 2000). 
 The main purpose of this paper is to compare the design peak discharge values (1 in 100 year ARI) for 62 
large watersheds (sized between 1,258 and 35,944 hectares) within the Riyadh Region by using different 
methods, i.e. the Modified Talbot empirical approach; the Regression Method, and the SCS Unit Hydrograph 
(HEC-HMS modeling with Type 2 distribution) method. The SCS method is considered to be the most reliable, 
since it is based on actual rainfall data; however, a calibration analysis was performed to verify the suitability 
of this approach for the study area. 

 
2 DESCRIPTION OF STUDY AREA 
 The study area is located in the central part of Saudi Arabia, in the Riyadh Region (Figure 1). The Saudi 
Arabian regions are typically characterized by the wadis; a wadi is an ephemeral stream in which runoff is 
present for only a limited time, mostly during and after a rainstorm event. In some seasons, wadis become 
conveyors of runoff, flood or flash floods that carry away large amounts of sediment, leaving a marked imprint 
on the landscape. Permanently flowing water often exists in the gravels below the surface of a large wadi 
subsurface terrain. As all arid and semi-arid regions of the Kingdom of Saudi Arabia, the selected basins are 
characterized by short-lived and often very intense rainfalls. As a result of the thin top soils cover, most of the 
rainfall runs directly off the surface and the downslope infiltration in deep soils is limited. 

 

 
Figure 1.Location of the study area. 

 
3 HYDROLOGICAL MODELLING 

 
3.1 Basic assumptions 
 The computed design flood estimates (peak discharge) according to historical rainstorm records are 
based on certain assumptions and are subject to some restrictions. The basic assumptions related to 
computation of peak discharge are: 

• regional daily rainfall data of good quality with reasonable representation of the 24-hour precipitation 
pattern in the area; 

• rainfall intensity is uniformly distributed over the entire drainage area which contributes to the peak 
discharge when the time of concentration has elapsed; 

• rainfall intensities assumed as uniform spatially and temporally during a storm and storm cells are 
relatively significant enough that extreme rainfall intensities for a given rainstorm are uniform; 

• the frequency of peak discharge is the same as the rate of the rainfall intensity for the given time of 
concentration; 
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• watershed comprises similar characteristics throughout the area, and the Coefficient of Runoff (C)
value is assumed as constant and uniform;

• the run-off is directly related to rainfall and rainfall excess for a given return period will produce the
run-off of the same return period;

• Time of Concentration is equal to duration time to get the maximum peak flow discharge;
• runoff characteristics of drainage basins are assumed as constant during design period with no

change in land use and surface conditions;
• Curve Number (CN) values have been evaluated through geological and land use maps;
• the boundaries and other physiographical parameters of catchment areas of wadis (stream channel)

were determined by DSM maps (30x30 mesh) and spot elevations given on published topographic
maps (scale 1:50,000).

3.2 Available rainfall data and statistical analysis 
Adequacy of recorded rainfall data is required to perform a reliable statistical analysis of the rainfall 

distribution, and that is one of the basic input design parameters for railway drainage structures. 
The KSA territory, in general, has a lack of information regarding the rainfall measures both in terms of 

spatial distribution of gauging stations and event recording data (Pluvio), as well as the daily rainfall recording 
series data (years).  

However, a comprehensive set of data for a considerable number of gauging stations were collected and 
analyzed. The obtained rainfall data represents the daily (24-hour) cumulative measurements recorded with 
different recording periods and variable time frames of operation. 

In flood frequency analysis, the Gumbel distribution were adopted to estimate the 1 in 100 year 24h 
rainfall depth. 

3.3 Methods to estimate the peak discharge 

3.3.1 HEC-HMS modelling 
The Hydrologic Modelling System HEC-HMS is a product of the Hydrologic Engineering Center of the 

U.S. Army Corps of Engineers (http://www.hec.usace.army.mil/ software/hec-hms/).  
It is designed to simulate the complete hydrologic processes of watershed systems. The program 

includes many traditional hydrologic analysis procedures such as event infiltration (e.g. Green Ampt, Smith 
Parlange.), unit hydrographs (e.g. Clark, Snyder, and SCS) and hydrologic routing (e.g. Muskingum and 
modified Puls methods).  

HEC-HMS also includes procedures necessary for continuous simulation including evapotranspiration, 
snowmelt, and soil moisture accounting. The program features a completely integrated work environment 
including a database, data entry utilities, computation engine, and results reporting tools. The program allows 
selecting from a variety of precipitation meteorology models, loss methods and transform methods. 

First of all, for the estimation of the peak-runoff, HEC-HMS requires the choice of an input hyetograph. 
Different methods to simulate a storm event are provided; when specific recordings of storms are not 
available, it is possible to choose a user specified SCS time distribution (Type 1, 1a, 2 or 3) entering a 24h 
total storm depth. The most conservative hyetograph curve Type 2 were chosen. This rainfall distribution were 
developed for the arid zones of U.S.A. and encompassed a huge number of severe thunderstorms of different 
durations (Mc Cuen, 1982; 2002; Ponce, 1989). For the use of the SCS unit hydrographs, the software 
requires to digit a Lag Time and the Curve Number of the watershed. A Curve Number of 90 were considered, 
since it corresponds to the most conservative soils encountered. The Lag Time of the basins were estimated 
equal to 0.6 Tc (Time of Concentration) (Mc Cuen, 2002). 

3.3.2 Modified Talbot Formula 
The empirical “Modified Talbot Formula” was developed in Saudi Arabia by the MOT (Quraishi and Al 

Hassoun, 1996) in order to estimate the amount of floods for different areas, particularly for catchments areas 
where actual flood records are not available. This method was used to estimate the amount of runoff 
generated from all drainage areas.  

Flow estimation in the “Modified Talbot Formula” depends upon the catchment areas as follows (Large 
Watersheds 1,258 ha < S < 35,944 ha): 

  4.1
100


f

RnSKQ      [1] 

Q100 being the peak discharge for the 1 in 100 years storm (in m3/s); the constant K assumes the values 3.561 
for large watersheds; S, the catchments area (in ha);, the coefficient of discharge depending on terrain 
condition, slope of drainage area and shape factor:  = C1+C2+C3 (C1 is the coefficient of terrain condition, 
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C2 is the coefficient of slope of drainage area and C3 is the coefficient of shape of drainage area). The 
exponent n assumes the values 0.5, Rf  is the rainfall factor which was suggested to be 1.4. 

3.3.3 Regression Method 
The Regression method were developed for use in the arid and desert-like regions of the southwest part 

of the United States; the M.O.C. (Kingdom of Saudi Arabia Ministry of Communication) proposed an 
adjustment of the equation for their use in Saudi Arabia. 
The method considered different equations depending on the Hydrologic Region of reference; for the region 
related to the study area, the equation assumes the following form: 

  915.030.1610.00969.0
100

PESQ     [2] 

where Q100 is the design flood discharge [m3/sec] for 100 years ARI (adopted for railway works); S is the 
drainage area (in km2); E is the mean basin elevation (in 10³ m a.s.l.); P is the mean annual precipitation (in 
mm).The value of the mean annual precipitation can be obtained from Figure 2 (Alazba, 2004). 

Figure 2. Regression Method: maximum annual rainfall depth distribution. 

4 PEAK DISCHARGE CALCULATIONS AND DISCUSSIONS 
The results obtained with the three methods and for the selected basins are shown in Figure 3. 

Figure 3.Peak Discharge values for the selected basins (1 in 100 years ARI). 

Basically, the Talbot formula provides the higher values of the peak discharge, confirming the results 
obtained by previous studies (Fouli et al., 2016; Quraishi and Al Hassoun, 1996). The Regression method, 
included in the M.O.C. Highway Design Manual, leads to the lower values. HEC-HMS calculations, computed 
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with 24-hr rainfall and SCS Type 2 distribution, gave an intermediate value that is allegedly to be considered 
more reliable, since it is based on more accurate modeling and actual rainfall data. 

However, the results were obtained through cumulative daily rainfall depths adapted to dimensionless 
hyetographs (Type 2 curves) that are not representative of the actual time distribution of the storms typical of 
the study area. For this reason, an additional effort of calibration had to be made to validate the results 
obtained with this method and to justify its use in the peak discharge estimations for engineering purposes. In 
fact, the main aim of the present paper is not to model the exact hydrograph shape that could be produced by 
a given storm, but to find an easy and reliable method to estimate the design peak discharge of different 
watersheds in the study area, when only 24-hr rainfall data are available.  

5 CALIBRATION AND COMPARISON OF THE RESULTS 

5.1 Calibration Methodology 
Since no official discharge measurements are available, the following steps were followed to carry out the 

calibration of the results computed with HEC-HMS (SCS Type 2 distribution): 
i. Selection of a representative watershed within the study area
ii. Peak discharge estimation of an actual past storm event, through the collaboration of information

obtained by the interviews of local eye-witnesses
iii. Peak discharge estimation of the above mentioned storm event, by modeling the runoff with

HEC-HMS software and using specific dimensionless rainfall hyetographs valid for the Riyadh
Region (Elfeki et al., 2013), re-scaled on the actual 24-hr rainfall that produced the observed
runoff, and for a duration equal to the Time of Concentration of the studied watershed.

iv. Peak discharge estimation of the selected basin, for the above mentioned storm event, applying
the Rational Method and using the rainfall intensity derived from specific IDF curves for the
Riyadh Region (Al Hassoun, 2011) for a Time of Return derived by the frequency analysis
performed for the closer gauge station (Figure 5).

v. Comparison of the results.

5.1.1 Selection of the watershed (Step I) 
The following criteria for the choice of the basin are adopted: 

 The selected watershed should be as close as possible to a gauging station
 Size between 1,258 and 35,944 ha (Large watersheds by the Talbot method classification),

consistently with the range considered in the current study
 Conservative geological features in terms of soil type (low infiltration capacity)
 The selected watershed should be as close as possible to areas where other studies were

performed and where it is possible to obtain IDF curves and specific hyetographs
 An adequate presence of local inhabitants or resident shepherds along the wadi

The selected watershed that fulfills all the above mentioned requirements is shown in Figure 4. 

Figure 4. Calibration analysis: location of the selected watershed. 

The main morphological features of the selected drainage basin are reported in Table 1. 
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Table 1.Morphological parameters of considered basin. 
Catchment  

Area  
(ha) 

Main stream 
length  
(km) 

Difference in 
Elevation  

(m) 

Mean slope  
 (m/m) 

Maximum 
Elevation  
(m a.s.l.) 

Minimum 
Elevation  
(m a.s.l.) 

Time of 
Concentration 

(hours) 

11067.1 24 120 0.005 731 611 6

5.1.2 Rainfall data and frequency analysis results 
 Table 2 lists the gauging station that was considered for the analysis of the selected watershed; Figure 5 
shows the locations on the territory and the results of the frequency analysis using the Gumbel distribution. 

Table 2.Rainfall gauging station considered in the calibration analysis. 

ID Lat Long 
Elevation 
(ma.s.l.) 

Recording 
start year 

Recording 
end year 

Total years

00462 25.217 46.283 645 1964 2015 51 

Figure 5. a) Location of considered rainfall station; b) Results of the frequency analysis. 

5.1.3 Curve Number estimation  
The Curve Number is the index that represents the combination of a hydrologic soil group and a land use 

and treatment class (Mc Cuen, 2002).  
The soils of the studied areas are constituted primarily by shallow layers of limestones (Figure 6) which 

are mainly impervious and hence characterized by a low infiltration capacity, especially if the design storm 
event is preceded by another event that can saturate the superficial pervious layers.  

Figure 6. Geological Map of the study area. 

The land is mainly featured by unpaved and desert surfaces, with pastures and rare crops. For these reasons, 
Group D soils were assumed, and desert shrub cover type, in poor hydrologic conditions were considered.  
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The corresponding CN value of these types of soils and land use is usually 88, however a CN = 90 was 
used as recommended by some authors for limestone soils (Sen, 2008). 

The Modified Talbot Method and the Regression Equation do not take into account this parameter, that 
plays a key role in the rainfall-runoff processes and hence in the peak discharge estimations. 

5.1.4 Indirect Peak Discharge Estimation by eye-witnesses information (Step II) 
 A relevant number of inhabitants, shepherds and Bedouins were interviewed to request information about 
the past flooding events they viewed, specifying the date of the observation, the maximum water level in the 
wadi and an idea of the velocity of the flow. The data and the location where the most reliable and accurate 
information have been obtained are shown in Figure 7. 

Figure 7. Eye-witnesses location map and data. 

 All the respondents referred their observations to a storm event that occurred between the 27th and the 
28th of November 2016. Information collected on the web weather archives reported a 24-hr rainfall depth of 
roughly 20 mm in those two days (font: www.meteoblue.com). According to the performed frequency analysis 
(Figure 5), this event can be associated to Time of Return of 3 years. 
 To complete the analysis, a stretch of the wadi was modeled using a detailed DSM (Digital Surface 
Model). The flow rate of the observed event was then derived with an iterative process with the HEC-RAS 
software (Figure 8), trying different input discharge values and Manning’s roughness coefficients, until the 
observed water levels in steady flow conditions were obtained. 
 For a wadi stretch of about 300 meters across the observation point, the HEC-RAS results led to water 
depths varying from 0.9 to 1.3 meters and maximum flow velocities of 1.16 m/s, matching with the collected 
information. 

Figure 8. HEC-RAS modelling for the selected wadi. 

5.1.5 Peak Discharge Estimation with specific hyetographs (Step III) 
 Several dimensionless hyetographs for some regions of KSA are available in literature (Elfeki et al., 

2013). The Hyetographs obtained for the Riyadh Region was used in the present study, rescaling the 24-hr 
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rainfall depth of 20 mm (observed event) for a fixed duration event of 6 hr (with the assumption that the event 
duration time is equal to time of concentration to get the maximum peak flow discharge).  
 The discharge was then calculated with HEC-HMS software by applying the Specified Hyetograph 
precipitation method option.  

5.1.6 Peak Discharge Estimation with Rational Method (Step IV) 
The Rational Method for peak discharge estimation is usually applied for basins with areas smaller than 

50-80 ha. However, to have an additional parameter for comparison and validation, it was applied to the
studied watershed, considering an Areal Reduction Factor (ARF) to reduce the over-estimation effect due to
the features of this method, which assumes the rainfall intensity homogenous for all the catchment area.

The peak discharge was derived using the following equation: 

   
360

ARFiSC
p

Q


   [3] 

where C is the Runoff Coefficient which is assumed to be equal to 0.45; S is the area of the watershed in 
hectares; i, the Rainfall Intensity (mm/h); ARF is the Areal Reduction Factor equal to 0.95 (Mc Cuen, 2002). 
The rainfall intensity was derived using the following equation (Al Hassoun, 2011): 

  
82.0

35.0153

d
t

r
T

T
i


  [4] 

where iT is Rainfall Intensity for a given Time of Return and storm duration (mm/h); Tr is the Time of Return 
(years); td is storm event duration (minutes). For large basins (catchment area > 50 ha), the following 
relationship can be applied to compute td (Almeida et al., 2014): 

 19.076.0191.0  iL
d

t 				[5]	

where L is the main stream length (in km); i (m/m), the main slope. 

5.2 Results of calibration and discussions 
The results obtained through the above methods are shown in Table 3 together with the value of the 

peak discharge calculated with HEC-HMS (Type 2 distribution).   

Table 3.Values of peak discharge Q3, computed through different methods, for the considered basin. 
Q3 (m3/s)

HEC-HMS  
(SCS Type 2) 

Indirect Eye-Witness (Step II) 
HEC-HMS (Step 

III) 
Rational  Method 

(Step IV)  

20 19 20 23

As shown in Table 3, the discharge values estimated with the different methods are very close to the 
value calculated with HEC-HMS (Type 2 distribution).  

A further verification were performed by comparing the HEC-HMS (SCS Type 2) results with the results 
obtained from HEC-HMS (Step III) and Rational Method, including further 7 basins in the study area (with 
Time of Concentration equal to 3, 6 and 12 hours) and considering a Time of Return of 100 years. 
 The rainfall depths for the different durations were derived by DDF curves (Duration – Depth - 
Frequency) related to the IDF curve of Riyadh (Equation 4). The obtained results are shown in Table 4 and in 
Figure 9. 
 Since the observations related to actual storm events of 1 in 100 years ARI (Average Recurrence 
Interval) are not available, it is not possible to calibrate the method with recorded flow data. However, the 
following comparison is useful to confirm, with a certain level of accuracy, the reliability of the proposed 
method. 

Moreover, it is worth to observe that the use of the IDF and DDF curves for deriving the 24-hour rainfall 
depths should ensure a consistency between the input data of the different methods and hence to validate the 
approach rather than the obtained values. For the design applications, the 24-hour rainfall data derived from 
the statistical analysis of the gaging stations should be used. 
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Figure 9 and Table 4 confirm that, even for a higher Time of Return, the use of the HEC-HMS SCS-Type 
2 distribution for the peak discharge estimation leads to values comparable to the flow rates calculated with 
other methods, based on local IDF curves and rainfall distribution hyetographs. 

Table 4.Values of peak discharge Q100 computed through different methods, for considered basins. 

Catchment  Area Tc  
DDF 24-hr 
Rain Depth 

DDF Tc 
Rain Depth 

Rainfall 
Intensity 

HEC-HMS 
SCS Type 2 

HEC-HMS 
Method (III) 

Rational 
Method 

(ha) (hours) (mm) (mm) (mm/hour) Q1 (m3/s) Q2 (m3/s) Q3(m3/s) 

513 3 47 33 10.78 8.3 5.7 7.4

718.9 3 47 33 10.78 11.7 8.1 10.3

1,721.8 3 47 33 10.84 28.1 19.5 24.4 

1,797 3 47 33 10.55 28.1 19.5 24.7

6,542 6 47 37 5.94 52.1 43.6 49.6

9,353 6 47 37 6.16 88.7 65.7 72.1

11,067 6 47 37 6.33 111 85.0 88.0

26,321 12 47 42 3.55 151 125.0 116.8

Furthermore, the peak discharge values computed with the proposed method and for the 1 in 100 year 
ARI (Average Recurrence Interval), are always slightly higher than the values obtained with the methods 
considered in the comparison.  

This aspect is positive in a design context, since it leads to more conservative dimensioning and avoids 
excessive over sizing as this could occur using the Talbot Equation. 

Figure 9. Peak discharge Q100 vs Catchment Area, for considered basins. 

6 CONCLUDING REMARKS 
The performed hydrological study has highlighted the need for a methodological approach for the peak 

discharge estimation to meet the requirements with the easy application and reliability of the results.  
The performed study has shown that, for a relevant amount of watersheds, the Modified Talbot equation, 

in spite of its practical use, leads to excessive values of peak discharge consistently with other studies 
conclusions (Fouli et al., 2016; Quraishi and Al Hassoun, 1996). Conversely, the Regression Equation 
underestimates the peak flow rate, confirming substantially the error declared in the Highway Design Manual 
of the M.O.C. (Kingdom of Saudi Ministry of Communications). The reason for these inconsistencies can be 
found in the fact that both methods do not take into account actual rainfall data, the soil type and land use 
features (Curve Number). Even if the territory of the Kingdom of Saudi Arabia is affected by a lack of rainfall 
measurements, there is a relevant number of 24-hour cumulative rainfall recordings, with good spatial and 
temporal distribution. 

The use of a method suitable with these types of data has been investigated, and subsequently the 
SCS method has been applied, processing the input data through the HEC-HMS software and considering a 
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Type 2 rainfall distribution. The results obtained for this approach have been compared with other methods, 
performing a calibration based on indirect peak discharge estimation of a recent actual storm event and using 
information available in the literature. The calibration outputs show a good fit for the HEC-HMS/SCS method 
that could be considered a reliable instrument in the peak discharge estimation for detail engineering 
purposes in the study area. However, the use of the Modified Talbot Method and the Regression Equations, is 
recommended where no information is available or in the feasibility studies where minor accuracy in the 
results is justified by a reduced level of detail and simplified calculations. 

Finally, it is recommended in the future to carry on the research with additional efforts in the calibration 
process, obtaining official discharge measures of different wadis, together with adequate rainfall recordings of 
actual storm events.   
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ABSTRACT 
  
Hydrological model is an important tool in enabling the researchers to predict the runoff in the catchment 
areas and assess the water resources management practices. Distributed models must undergo calibration 
procedures before it is used to help in making decisions in the planning and management of water resources. 
Generally, manual calibration is performed repeatedly which is time-consuming and needs experienced staffs. 
This paper describes a semi-automatic approach for calibrating long term monthly streamflow periods 
estimated by the Soil and Water Assessment Tool (SWAT) hydrological model. After 26 repetitions, 9 SWAT 
input parameters reflect the sensitivity on the streamflow simulation. For Cameron Highlands river basin, the 
Runoff Curve Number (CN2.mgt), Base flow recession constant (ALPHA_BF.gw) and Groundwater delay time 
(GW_DELAY.gw) is found to be the most sensitive input parameters. CN2.mgt is established to be the most 
sensitive to surface respond parameter and followed by ALPHA_BF.gw and GW_DELAY.gw for subsurface 
response. Therefore, the next step needed is a long-term continuous hydrological modeling which is to be 
conducted into the SWAT 2012 model with all the selected sensitive SWAT input parameters in order to 
finalize the objective functions for the watershed.  

 
Keywords: Hydrological modeling; monthly streamflow; SWAT input parameter; SUFI-2 algorithms. 

 
 

1 INTRODUCTION   
 Water that is the end result of interactions between the atmosphere, land surface and the ocean will flow 
into the catchment area acting as a hydrological unit. River flow reflects the amount of water moving from the 
watershed to the channel and the number of discharges from the river. Flow can be influenced by several 
factors. River flow can be affected by natural and human factors. It can also respond to changes in the flow 
parameters. Evaporation and water consumption by plants significantly affect the flow of the river. Vegetation 
greatly affects the flow in the dry season. This is because when the temperature rises, the plants that grow on 
the banks of the river will use the most water. In addition, the flow is also affected by the water under the 
surface, but at a slower rate. Seasonal conditions, addition with increasing population pressure on water 
resources management. This applies particularly in the dry season, when water demand is high and supply 
from stream flow is low. Adequate stream flow can cause erosion, transport and deposition of sediments. 
Strong current will keep sediment longer in the riverbed. Therefore, prediction and assessment of river flow is 
important for watershed management, agriculture and sustainable development in the water resources sector. 
 Cameron Highlands catchment receives good amount of rainfall during the year and has ecological and 
economic diversity. It is located in the northern state of Pahang, Peninsular Malaysia. Apart from the hilly 
topography, highly intensive farming practices and deforestation in the basin causing great loss of productive 
land and water runoff. Thus, watershed management plans integrated based on hydrological simulation study 
using an appropriate model approach is required to evaluate this issue. The use of mathematical models for 
assessing the hydrological watershed is the current trend and extraction watersheds using hydrologic model 
based on parameter-in high-speed computer assisted tools and techniques for it. Therefore, the current study 
was conducted with the use of ground water assessment tool (SWAT) and SWAT CUP (calibration and 
program uncertainty) in the integration of remote sensing and GIS environment to estimate surface runoff 
trend in a long time. Watershed model calibration is a challenging task because of the uncertainty of input 
data, model structure and algorithm, parameterization and output obscurity. Sources of uncertainty structure 
model including processes are not taken into account in the model, such as activities that are not known in the 
catchment area and not just because of over-simplification of the process considered in model it. Input 
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uncertainty may be related to the improper size or determining the spatial model input parameters such as 
elevation data, land use data, rainfall, temperature and other data. 
  
2 STUDY AREA 
 The study area is located in Cameron Highlands watershed, sub-basin Jelai in Pahang, Malaysia and is 
between the longitude 101°20”0’- 101°60”0’ E and latitude 4°50”0’-4°0”0’N, which covers approximately 
25890.04 km2 catchment area. The gauge station, Sungai Jelai, Kuala Nam (Kuala Lipis District) was selected 
as the outlet of the catchment (Figure 1). A brief description of the river basin is summarized in Table 1. 
 

Table 1. Background Cameron Highlands watershed. 
 Description 
Catchment area 2 5890.04 km2 
Longitude / latitude N04°30'17.0" - N04°25'52.70" 

E101°23'14.7" -E101°23'16.40" 
Major river Bertam River and  Telum River 
Gauge Station (river discharge) 4218416 Sg. Jelai at Kuala Medang 
Rainfall station 4414037Ldg. Boh (Bhg. Boh) 

4414038 Ldg. Boh (Bhg. Selatan) 
4414040 Mardi C Highlands 
4513033 Gunung Brinchang C. Higlands 
4514031 Ldg. Teh Blue Valley 
4514032 Ldg. Teh Sg. Palas C. Higlands 

 

 
Figure 1. Index map of the study area. 

 
3 MATERIALS AND METHODS  
 
3.1 Model setup and simulation 
The major geospatial input data includes Digital Elevation Model (DEM), soil data, land use and stream 
network layers. SWAT requires daily meteorological data that can either be read from a measured data set or 
generated by a weather generator model. The weather variables used in this study are daily precipitation, 
minimum and maximum air temperature for the period 1998 to 2006. A weather generator developed by 
(Schuol and Abbaspour, 2007) was used to fill the gaps due to missing data. Daily river discharge values for 
Kajang streamflow station were obtained from the Department of Irrigation and Drainage (DID) Malaysia. The 
model setup involved five steps: (1) data preparation; (2) sub-basin discretization; (3) Hydrologic Response 
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Unit (HRU) definition; (4) parameter sensitivity analysis; (5) calibration and uncertainty. The sub-basin 
discretization only focused on the 331.36 km2 upper part of the Langat River basin as in Figure 1 . The 
watershed was divided into 33 sub-basins and 116 numbers of HRUs after completing the first three 
processes in the model setup. 
 In SWAT model, input parameters can be either manually adjusted in the SWAT model or can be 
accessed in the SWAT-CUP. SWAT-CUP is a semi-automatic approach to a computer program for the 
calibration of SWAT models, and the programs link SUFI-2 algorithms to SWAT. It enables sensitivity 
analysis, calibration, validation, and uncertainty analysis of SWAT models (Abbaspour et al, 2004; Abbaspour, 
2012). Optimization of three different sets of spatial input parameters were tested, in order of, firstly focusing 
on the sets of groundwater inputs parameter, secondly for the soil input parameters and finally for the set 
consisting of 21 SWAT input parameters (Table 1) which reflects the sensitivity on the streamflow simulation. 
After setting up the model, the default simulation of streamflow was conducted in the Cameron Highlands 
basin for the calibration period and, after that, compared with the observed streamflow. A period of 9 years 
(1998 to 2006) daily rainfall data was utilized in the calibration periods with the first four years used for the 
model warm-up. 
 

Table 2. Selected input parameter of SWAT model. 

Nama Parameter Huraian 
Range 

Min Max 
CN2.mgt SCS runoff curve number 35 98 
ESCO.hru Soil evaporation compensation factor 0 1.00 

SOL_AWC.sol 
Available water capacity of the soil layer                   (mm 
H2O /mm soil) 

0 1.00 

ALPHA_BF.gw Base flow recession constant 0 1.00 
GW_DELAY.gw Groundwater delay (days) 0 500 

GWQMN.gw 
Threshold depth of water in the shallow aquifer required 
for return flow to occur (mm) 

0 5000 

GW_REVAP.gw Groundwater "revap" coefficient 0.02 0.2 

REVAPMN.gw 
Threshold depth of water in the shallow aquifer            for 
"revap" to occur (mm) 

0 500 

SURLAG.bsn Surface runoff lag coefficient 0.05 24 
 
4 RESULTS 
 
4.1 Model calibration on monthly basis using SUFI-2 
 In SUFI-2 program parameter uncertainties include all sources of uncertainty, such as uncertainty in input 
variables (variable climate), the concept model, the parameters and the observed data. The extent to which all 
the uncertainties taken into account assessed by measurement known as factor P, in which the measured 
data in brackets (bracketed) by 95PPU or 95% prediction uncertainty (Abbaspour 2015). Therefore, it 
measures the power of uncertainty analysis and calibration. 
 R Factor is another measure to measure the power of uncertainty analysis and calibration. R factor is the 
average thickness 95PPU band divided by the standard deviation of the observed data (Abbaspour 2015). 
The range of parameters used in the final repetition SUFI-2 provided adequate value for both the P and R 
factors (). 

 
Table 3). Repetition rivals became less optimal when considering the two criteria (factor P and factor R). The 
parameters are then used for authentication purposes.  
 The results of last iteration in SUFI-2, produced acceptable results are displayed graphically in Figure 2. 
It provides Factor R = 1.63 (out of a perfect score of 0). Factor R which is under the value of one indicates that 
a small band 95PPU (Schuol et al., 2007). A total of 85% (95PPU) of the observed value of the monthly runoff 
can be captured by a band 95PPU (from a perfect score of 100%). In this figure, the upper and lower bands 
95PPU shown between the two lines and describe 95PPU R factor (1.63). The extent to which data fall 
between the upper and 95PPU the lower line depicts 95PPU factor P = 0.85 (Figure 2). 
 

Table 3. Various parameters for repeating last term during calibration with SUFI-2. 
Parameters Range 
 Minimum Maximum 
CN2.mgt 38.589 42.268 
GW_DELAY.gw 638.865 682.239 
ESCO.hru -0.004 0.013 
GWQMN.gw 0.891 0.942 
ALPHA_BF.gw -0.003 0.007 
SURLAG.bsn -21.654 -19.899 

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print) 3963



  
          

  

 

Parameters Range 
 Minimum Maximum 
SOL_AWC.sol 1.749 1.793 
GW_REVAP.gw 0.182 0.183 
REVAPMN.gw -225.385 -200.652 

 

Figure 2. The results of the calibration of SUFI-2 compared to the measured flow (m3 / s) of the gauge 
4218416, 1998-2006. 

 
 For the performance evaluation model in terms of quantitative statistics that measure the compatibility 
between the values of flow simulations and observations, NSE, PBIAS and R2 were used as criteria. The 
objective function defined was NSE = 0.5 and this has been achieved during calibration, where NSE is 0.5. 
Performance evaluation is considered as satisfactory for 0.5 <NSE (Morias et al., 2007; Saleh and Du, 2004). 
NSE, as well as measures that other statistics to compare data in the observatory with the calibration data of 
simulation in SUFI-2. These include the percentage of bias (PBIAS) and correlation (R2). PBIAS optimum 
value is zero, a low value indicates that the simulation model is accurate. The results of the calibration 
process SUFI-2, showing a good performance with PBIAS value of -7.5% (Table 4). R2 = 0.61 indicated good 
correlation between the values of the observed and simulated (Table 4). 

Table 4. Results of statistical analysis have been quantitative model to evaluate the performance of the 
observed and simulated data comparison monthly water flow during calibration (1998-2003) and validation 

(2004-2006). 
 Nash-Sutcliffe coefficient PBIAS correlation (R2) 
Calibration 0.5 -7.5 0.61 
Validation 0.1 -8.0 0.01 

 
 Global sensitivity analysis results conducted in SUFI-2 are shown in Table 5 and Figure 3. The statistics 
provide a measure of the sensitivity of the parameter t, where larger absolute value is more sensitive. P value 
indicates the importance of sensitivity, where the p-value is closer to zero is more important.  

Table 5. Global decision 26x sensitivity analysis after repeated use SUFI-2. 
Nama Parameter t-stat P-value 
1:V__CN2.mgt         -2.02366 0.043547 
2:V__ALPHA_BF.gw     31.41096 0 
3:V__GW_DELAY.gw     0.672259 0.501736 
4:V__GWQMN.gw        -0.45998 0.645734 
5:V__GW_REVAP.gw    1.80829 0.071174 
6:V__SURLAG.bsn      -0.25676 0.797474 
7:V__REVAPMN.gw      -0.70421 0.481634 
8:R__SOL_AWC(..).sol -2.03032 0.042864 
9:V__ESCO.hru        -0.21914 0.826633 
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Figure 3. The results of the sensitivity analysis of global calibration. 

 
 The verification period is from 2004 to 2006. For verification, calibration of various parameters used in the 
repetition of the same amount of simulation as used in the calibration process, as much as 500 times the 
simulation. Results confirmation calibrated using various parameters are shown in Figure 4. For the 
confirmation, 56% of the observed data fall within the calibration band 95PPU corresponding period. (Factor R 
= 1.81 versus factor R = 1.63 for the calibration). R factor of 1.81 is acceptable, because it is approaching 1.0 
(Schuol et al., 2007). 
 

 
Figure 4. Results confirm the SUFI-2 compares the flow of gauge 4218416 was observed for 2003-2006. 

 
 NSE value for verification is 0.1 (Table 5). Although this does not meet the objective function> 0.5 
expressed in Sufi-2, Morias et al.  (2007) stated that values between 0.0 and 1.0 is generally viewed as an 
acceptable level of performance. NSE values <0, show that the average of the observed values is better than 
the simulations, show unacceptable performance. PBIAS for confirmation is -8.0%, is acceptable. R2 = 0.01 is 
acceptable. 
 
5 DISCUSSIONS 

The results of this study are appropriate for the calibration model. This includes a comparison chart that 
takes into account all forms of uncertainty by SUFI-2 program (factor P and factor R), as well as quantitative 
statistical analysis. The model is calibrated and validated, still produces a poor value, especially for 
quantitative analysis. This model is still able to embrace most of the observed data within a small uncertainty 
band, as shown in the chart. NSE also still acceptable. The results show that this model can simulate peak 
and low flows satisfactorily, as demonstrated by statistical methods R2 (R2> 0.5), for calibration and 
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verification. Statistics PBIAS considered unacceptable during authentication. PBIAS negative value indicates 
that the model has a tendency to increase the flow direction (Moriasi et al., 2007). Abbaspour et al. (2014) 
explains that the choice of objective function in SUFI-2 can affect the obtained results. The best solution is to 
check the results, focusing on the statistical set as an objective function (in this case NSE). It also may be 
caused by a condition within the confirmation differ significantly from the last calibration. Although there is 
doubt, evaluation for confirmation can still be accepted. Generally, Morias et al. (2007) noted that appraisals 
are needed during the calibration model compared with confirmation. 
 Use of NSE for the objective function needs to be discussed. Although it has been widely used and 
accepted many literature (Moriasi et al., 2007; Fadil et al., 2011; Mango et al., 2011). There are also some 
negative issues that need to be considered. McCabe (1999) emphasized that because of the difference 
between the values of the observed and simulated is squared, the values the larger series will be wasted and 
the values of the lower will be ignored. This means for the calibration and verification of flow, NSE focused on 
peak efficiency and high flow and cause less focus on forecasting low flows (Krause et al., 2005; Qi and 
Grunwald, 2005). However, these measures have been in this research because preliminary results before 
calibration, simulation shows the trend of relatively high peak flow. NSE concentration to peak values can also 
help during the process of calibration and verification. It also explains the PBIAS during the confirmation, 
indicating that this model to underestimation bias NSE focused on correction of peak flow, that means it is 
important during the model calibration. 
 In this study, we have only one gauge in the catchment area of the river flow. Qi and Grunwald (2005) 
states "... more stations available for calibration and verification of models such as SWAT adapt to the 
characteristics of the local and regional watershed, water flow simulation prospects will be better and reliable". 
It will also lead to increased confidence when using the model to predict different scenarios and to predict 
trends in the stations that do not have gauges. Similarly, input data table, in addition to rainfall data, obtained 
from JPS stations that do not have sufficient data and questionable. However, due to rainfall data available in 
the catchment area and the weather station located in the watershed, this data is used together with data 
station to input data DID rain. 
 Among the limitations of the use of SWAT model to others is in the mountains of Cameron Highlands. It 
causes soil data and streams data to be limited. Although, the local soil data obtained, but the characteristics 
of the soil are quite difficult to identify. Therefore, in this study general data of FAO adopted and cause 
uncertainty in the modeling process. In addition, the database SWAT for land use parameters were used 
based on the type of vegetation cover from the United States. Although sufficient data, it can still cause some 
uncertainty in the model. For model calibration, the river flow (streamflow) emphasized. This is because there 
is no data flow (base flow) and surface runoff (runoff) can be found. 
The overall results of this study indicate when the SWAT model calibration parameters are within the 
appropriate range, it can simulate a reasonable monthly streamflow in catchment areas in Cameron 
Highlands. Similar findings were also carried out in Africa, which also found that the SWAT model can 
generate a reasonable hydrological data between the observed data with simulation (Mango et al., 2004; 
Govender and Everson, 2005; Birhanu et al., 2007; Mutenyo et al., 2013; Noor, H., et al., 2014; Ridwansyah 
et al., 2014). Meanwhile, a study by Birhanu et al. (2007) studied the suitability of SWAT model in 
mountainous catchment in Northern Tanzania and got good results by stating that '... the SWAT model by 
monitoring the potential to become a tool in the water catchment area in the catchment area of the mountains. 
Mutenyo et al. (2013) used the SWAT model in a mountainous area in eastern Uganda and found that the 
model can simulate the monthly hydrological data successfully in the watershed. Hydrology estuary area in 
the catchment area of the mountains in Indonesia has successfully modeled using SWAT (Ridwansyah et al., 
2014). Noor et al. (2014) found that SWAT model can predict accurately the hydrological watershed in the 
semi-arid mountainous Taleghan. 
 In order to parametrization and SWAT model adaptation to local stakeholders, researchers must have 
access to more data, or data that is of better quality. Limited data identified as an important issue in 
hydrological modeling, particularly in Malaysia and in the mountains (Mango et al., 2004; Mutenyo et al., 2013; 
Alford, 1985; Jayakrishnan et al., 2005; Messerli et al., 2004; Abbaspour, 2015). Mutenyo et al. (2013) found 
that for certain catchment areas of the mountains, to achieve results sufficient to enable researchers to 
simulate the daily river flow, more weather stations to 'catch microclimate' needs in the study area. 
Jayakrishnan et al. (2005) used the model SWAT River basin Bosque in Texas (USA), as well as in River 
basin sonde in Kenya, and said that this model has a good potential to be used worldwide and can be used to 
save time and money while catchment management water and make a decision. In the study, found the need 
to develop a dataset input variables in Africa (Mutenyo et al., 2013). Abbaspour, et al. (2007) used the SWAT 
model throughout Africa. Although the model is generally good, but there is considerable uncertainty in the 
forecast for several cases due to lack of database input (Schuol and Abbaspour, 2007). 
 The use of semi-automatic program like SUFI-2 in SWAT-CUP, combine all the uncertainties in the 
modeling process, as well as manual calibration coupled with the knowledge of hydrology in catchment areas, 
allowing adequate modeling. Ridwansyah et al. (2014) using the procedure SUFI-2 and found that it has 
managed to reduce the difference between observed and simulated data. Schuol et al. (2007) successful 
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calibration and validation of the SWAT model throughout Africa using SUFI-2 program. Forecast uncertainty 
also in quantity by using the program (Abbaspour, 2015). 

 
6 CONCLUSIONS 
 This study focused on the hydrological model mountains in Cameron Highlands. Brincang Mountain is 
one of the highest mountains in Pahang. Catchment areas in Cameron Highlands, including Mount Brincang, 
is a natural mountainous area. The catchment area has a gauge stations that provide existing data, as well as 
precipitation data from weather stations located in the watershed. The catchment area of the forest reserve. A 
larger part of the catchment area was forested. This means the runoff coming from the mountain has relatively 
good quality. SWAT model was applied in the catchment area of Cameron Highlands. The model was 
successfully conducted using GIS interface that provides user-friendly methods in putting data into SWAT 
program. SWAT model successfully simulates the flow of data from the catchment area of the river.  
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ABSTRACT  
 
After ‘Technical Guides of Sponge City Development-Low Impact Development of Rainwater System’ has 
been issued by Ministry of Housing and Urban-Rural Development of the People's Republic of China 
(MOHURD), the construction of sponge city has gradually been implemented nationwide. In order to solve the 
flood, water shortage and water quality problems resulting from the high urbanization rate in China, 30 pilot 
cities have joined the urban development plan of sponge city in recent two years. However, no consensus is 
reached to plan, design, construct and manage the sponge city which results in more practical problems as 
the program goes by. For example, optimizing the distribution of the LID (Low Impact Development) 
techniques and evaluating the overall sponge effects of the sponge city. To address the problems, a GPU 
based hydrodynamic model is developed in this work which couples the hydrological and hydrodynamic to 
simulate the net rainfall, surface water runoff, flood propagation and inundation, etc.. The model is able to 
evaluate the sponge effect caused by the LID measures through changing the hydrological, hydrodynamic and 
biological processes in urban area. GPU technique is employed to accelerate the computation to implement 
the large scale high-resolution simulation in a very efficient way. The model is applied in Xi-Xian New Area 
Sponge City Project to quantitatively predict the sponge effect on urban flood. 
 
Keywords: Low impact development (LID); sponge city; hydrodynamic model; GPU; storm water management. 

 
 

1 INTRODUCTION 
 Over last decades, urban expansions have fast developed all over the world, especially in China. Due to 
the rapid urbanization, the infiltration capacity of underlying surface in cities have significantly decreased. The 
global climate change and the fast urbanization in China have greatly raised the risk of the urban floods which 
occurs more frequently and spreading across coastal cities to inland cities. For example, the urban flood in 
Wuhan lead to massive losses of properties and lives in 2016. In order to mitigate the urban flood damage, 
water shortage and water quality problems, Ministry of Housing and Urban-Rural Development of the People's 
Republic of China (MOHURD) issued ‘Technical Guides of Sponge City Development-Low Impact 
Development of Rainwater System’ and the construction of sponge city has gradually been implemented 
nationwide. Mitigation of urban flood has become an important duty of the Chinese government. 
 Reliable simulation for urban flood which is characterized by complex flow patterns on complex terrain 
demands a robust hydrodynamic model with high resolution grid (Chen et al., 2012), generally beyond the 
capabilities of hydrological model. To address the problem, lots of flood forecasting models have been 
proposed, such as SWMM model (Cole and Shutt, 1976), Inforworks model (Koudelak and West, 2008) and 
MIKE-Urban. However, high resolution grid induces high computation burden. Most of the existing 
hydrodynamic models are not able to provide high-resolution and efficient simulations for large-scale rainfall 
runoff and flood propagation events. Besides, the lack of high accurate and robust numerical scheme also 
restricted the application. This paper therefore employs a stable 2D well-balanced shallow flow model 
proposed by a physically based dynamic wave model, which couples the hydrological and hydrodynamic 
processes to simulate the surface water runoff, flood propagation and inundation, drainage of sewer networks, 
etc.. The model uses the finite volume method to keep conservation. Aiming at enabling the large scale high-
resolution simulation, the computation is accelerated by the high-performance Graphic Processing Units 
(GPUs) parallel computing technique. The model’s reliability and efficiency for evaluating the sponge effects 
on urban flood are demonstrated by an application in Xi-Xian New Area Sponge City in Shaanxi Province, 
China. 
 
2 GOVERNING EQUATIONS AND NUMERICAL SCHEMES 
 The shallow water equations (SWEs) are derived from depth-integrating the Navier-Stokes equations and 
assuming hydrostatic pressure distribution. If the kinetic and turbulent viscous terms, wind stresses and 
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Coriolis effects are neglected, a conservation law of the two-dimensional non-linear shallow water equations 
can be written in the vector form as: 
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where,	t represents the time;	x and y are the Cartesian coordinates;	q denotes the vector of conserved 

flow variables consisting of the water depth h, unit-width discharges in x- and y-directions q୶ and q୷; q୶ ൌ uh 
and q୷ ൌ vh. And u and v are depth-averaged velocities in x- and y-directions;	f and	g are the flux vectors in x- 
and y-directions;	S is the source vector that can be further subdivided into net rainfall source terms, slope 
source terms and friction source terms.zୠ represents the bed elevation;C is the bed roughness coefficient that 
is generally computed by gnଶ hଵ ଷ⁄⁄  with n being the Manning coefficient. Moreover, rainfall, infiltration and 
drainage processes are also considered in this study. 

 The governing equations above are numerically solved by a Godunov-type finite volume scheme as 
presented in other papers of the authors, e.g. Hou et al. (2013a; 2013b). In this model, the Harten, Lax and 
van Leer approximate Riemann solver with the contact wave restored (HLLC) is applied to compute the 
numerical fluxes of water, momentum and sediment across cell interfaces. The values of variable at the 
midpoints of cell edges are extrapolated by the MUSCL method. The extrapolated values are then modified 
locally by a non-negative water depth reconstruction proposed in Audusee and Bristeau (2005) to preserve 
the C-property (Bermudez and Vazquez, 1994; Crnkovic et al., 2009). The slope source terms are computed 
by a slope flux method which converts the slope source at a cell into fluxes through its edge, so as to comfort 
to any complex unstructured grids (Hou et al., 2013). The friction source terms are solved through utilizing a 
splitting point-implicit method presented in Liang and Marche (2009). Moreover, a two-stage explicit Runge-
Kutta scheme is adopted to update the values to the new time level (Zia and Qamar, 2014). The infiltration 
process is evaluated by using Green-Ampt model and the drainage of sewer-network is computed by solving 
the one-dimension diffusive wave equations. The proposed model is programmed by applying the C++ and 
CUDA code which could considerably accelerate the computation on GPUs. 
 
3 GPU ACCELERATION 
 Dynamic wave method and Godunov-type scheme have successfully been applied in a wide range of 
literature, but computational power has limited their applications for extremely large domains with high-
resolution representation. Graphic Processing Units (GPU) parallel computing technique offers a new 
approach to achieve such simulation. GPUs are designed to rapidly manipulate and alter memory to 
accelerate the creation of images in a frame buffer intended for output to a display device. GPUs are very 
efficient at manipulating computer graphics and image processing, and their highly parallel structure makes 
them more efficient than CPUs for algorithms where the processing of large volumes of data by performing the 
same calculation numerous times, typically on vectors and matrices. Since new programming language CUDA 
have developed, this hardware has been used in general-purpose applications. There are a number of 
attempts have been made for GPU computing in highly resolution large-scale flood simulations, such as 
Brodtkorb et al. (2011) with a finite-volume scheme implementation of the full SWEs. Smith and Liang (2013) 
demonstrated the potential for generalized approaches applicable to both CPU and GPU co-processors. 
Successful and efficient implementation for GPUs computing technique requires rational consideration of the 
six elements shown in Figure 1. 
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Figure 1. The concept of model acceleration by using GPUs. 
 

4 MODEL APPLICATION 
 In this section, a real urban flood case with measured data is applied to verify the capability of the model 
and a desktop with a NVIDIA GeForce GTX 980Ti GPU is used to run all simulations. The 8h-flood event 
costed about 22h and 21h computational time for the two test cases, respectively. 
 
4.1 Project introduction and data collection 
 Xi-Xian New Area is located between Xi’an city and Xianyang city in Shaanxi province. It is one of the 30 
pilot cities that have joined the urban development plan of sponge city in China and the Sponge City Project 
has started since 2015. The planned sponge area is an independent drainage area and the area is 368 ha, 
including 25 ha roads, 93 ha school lands, 63 ha green fields and 187 ha residential and commercial land. 
The average annual precipitation is about 520 mm, with the July to September rainfall accounts for more than 
50 %. The average annual evaporation is about 1065 mm as shown in Figure 2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Averaged monthly rainfall and evaporation in Xi-Xian New Area. 
 

Data collected for this work includes the underground pipeline data, the 1 m-resolution DEM and DOM of 
the study area and the observed precipitation. The measured precipitation of 114.4 mm lasting 8.5 h on 
August 25, 2016 is used as the input data in this work. It is double-peak one and the highest peak showed at 
2.6 h (Figure 3(a)).  

DEM is obtained by using the UAV and DOM survey techniques and data were supplied at 1 m resolution 
as shown in Figure 3(b). The computational domain contains 3,681,167 cells. For the parameters such as 
water storage facilities in city, soil type and the infiltration rate, surface roughness etc. were provided by the 
Technical Center of The Sponge City in Fengxi New Town. 
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(a) (b) 

Figure 3. (a) Measured precipitation; (b)the DEM of the study area. 
 

4.2 Results and discussions 
Open boundary conditions are applied around the extremity of the domain. According to the real 

situation, the pump station at the outlet of the main pipelines has not yet been completed and the water could 
inject to the river in that event. That means the sewer network just worked as underground reservoirs with the 
total volume of approximately 11413 m3. The models run for 8 h with a Courant number of 0.5 s to simulate 
the inundation process for the study area with current and future LID measures. 

 Figure 4 plots the computed flood inundation for the area with current LID measures after 20 mins when 
the inundation beginning to appear. The flood depths at 3.5 h reached to about 45 cm and the biggest area of 
inundation is up to around 2000 m2. 
 

 
Figure 4. Computed flood inundation for the area with current LID measures at 20 mins. (Unit: m). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Computed flood inundation for the area with current LID measures at 3.5 h. (Unit: m). 
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The maximum depths of inundation are consistent with the measurement, and the inundation area is also 

close to the measured values as shown in Table 1. Figure 6 depicts the comparison between the computed 
and measured inundation locations. It is found that results of simulation again agree well with the 
measurements, proving the model is an accurate and robust one for urban flood modeling. 

 Then the proposed model is used to investigate the sponge effect on the flood inundations by assuming 
all the LID measures are completed (the reality is the construction is under way, so this case is termed as 
future LID measures). The LID measures are taken into account by change the infiltration rate and the storage 
volume and so on. We are running the model under the same initial and boundary conditions and the 
computed results are plotted in Figure 7 and 8. They sketch the comparison between two simulations. It is 
clearly observed that the future LID measures have greater effects on water quantity of urban rainfall runoff, 
significantly decreasing the flood inundation by mitigating the peak and the amount the surface runoff. 
 

Table 1. Computed and measured inundations for the flood event on 2016/08/25. 

 
THE LARGESTINUNDATIONAREA 

(MEASURED/SIMULATED) 
THE MAXIMUM DEPTHS 

(MEASURED/SIMULATED) 

POINT 1 663m2/700 m2 15.1cm/20cm 
POINT 2 567m2/900 m2 16.7cm/20cm 
POINT 3 1378m2/2000 m2 17.7cm/21cm 
POINT 4 675m2/500 m2 18,8cm/22cm 
POINT 5 981m2/1100 m2 25.6cm/30cm 

 

 
Figure 6. Comparison between the modelled and measured inundation for the area with future LID measures 

at 3.5 h. (Unit: m). 
 

  
Figure 7. Computed flood inundation for the area with future LID measures at 3.5 h. (Unit: m) 
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(a) (b)  

Figure 8. Comparison of the modelled flood inundations between the area with (a) current and (b) future LID 
measures at 3.5 h. 

 
5 CONCLUSIONS 
 In this work, a GPU-accelerated urban flood inundation model is developed and applied in a practical 
project to evaluate the sponge effect on for The Sponge City Project in China. The simulated results in terms 
of inundation area and depths are compared with the measured ones, indicating the model is able to compute 
the urban flood process in a reliable and efficient way. In addition, the model can be run on a desktop 
computer to predict the 1 m-resolution flood inundation, showing the GPU technique is an ideal approach to 
accelerate the computation. The sponge effect on the urban flood caused by the LID measures can also be 
reflected reasonably by the model. It therefore proposed an applicable and useful tool for planning, designing, 
constructing and managing the effects of the Sponge City Projects in China on the aspect of urban flood. 
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ABSTRACT 
 
Recently, as the economy develops rapidly and the urbanization process increases, the loss caused by 
waterlogging disaster has been more and more prominent and the urban flood has become a major issue that 
concerns the world. In this paper, SWMM hydrological model and MIKE11 hydrodynamic model are 
used in combination to simulate the rainfall runoff process as well as flood control and drainage process. The 
results show that, with the pump station, the water level of inner-river decreases compared with the case of no 
pump station. Moreover, the greater the pumping capacity is, the larger the drawdown value of the water level. 
Without the pump station, parts of the river reaches have high water levels in case one compared with the 
case two, for the reason that the case one has a higher outer tide level. The influence of outer tide level is 
decreased obviously, and the water level is mainly influenced by rainfall and pumping capacity. The results 
are reasonable, showing that the coupling model will benefit the flood control and drainage planning in the 
plain tidal river network. 

 
Keywords: Tidal river network; SWMM model; hydrodynamic model; flood control; drainage.  

 
 
1 INTRODUCTION 
 The plain river network region has a high urbanization level and a large population. Meanwhile, the plain 
river network region is generally a low-lying area with lakes and rivers all around, and thus is vulnerable to 
floods. Recently, as the economy develops rapidly and the urbanization process increases, the loss caused by 
urban waterlog disaster has been more and more prominent. It not only adds the task of flood control and 
drainage to the city, but also causes great influence to economic construction and people's livelihood. 

This paper simulated the rainfall runoff and flood control and drainage processes of the study area by 
adopting the SWMM hydrological model and MIKE11 hydrodynamic model, aiming at the flow characteristics 
in the plain river network and tidal region. Firstly, the study area was divided to several sub-regions based on 
the river system and underlying surface characteristics, and the rainfall-runoff of each sub-region was then 
calculated by the SWMM model. Secondly, the one-dimensional river network hydrodynamic model was 
established with the use of the MIKE11 software, which was developed by the Danish Institute of Water 
Conservancy. The runoff process of each sub-region, which can be regarded as the river inflow, was provided 
as the flow boundary condition for the hydrodynamic model. Therefore, the rainfall runoff model and 
hydrodynamic model was coupled, and the rainfall-runoff processes and the flood control and drainage 
processes of the study area were simulated. Eventually, the results were analyzed in detail. 

 
2 SWMM AND MIKE11 HYDRODYNAMIC MODEL  

 
2.1 SWMM model  

Storm Water Management Model (SWMM) is a comprehensive mathematic model for urban storm design 
and management, which was developed by the U.S. Environmental Protection Agency (USEPA). SWMM can 
simulate the complete urban rainfall runoff process, including surface runoff as well as flow process and 
regulation and storage of rainfall flood in the drainage system. Also, SWMM can display the flow and water 
quality state of each point both in the system and in the receiving water. This model has been applied in many 
areas in China such as Tianjin, Shanghai and Beijing (Liu and Xu, 2001; Cong et al., 2006; Liu et al., 2006). 

SWMM simulation software is composed of five modules. Runoff, transport, extran and storage/treatment 
make up the four calculation modules, which can process dynamic simulation for water quantity and quality of 
surface runoff, network of drains and sewage treatment units. While the main function of the service module is 
post process of calculation, such as statistics and drafting. The relationship between the modules is shown in 
Figure 1.  
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Figure 1. Relationship between the modules of SWMM (Ren et al., 2006). 

 
2.2 MIKE11 hydrodynamic model  

MIKE11 Hydrodynamic Model is based on Saint-Venant equations: 
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where, x and t are spatial and temporal axes, A is the cross-sectional area, Q is the flow discharge, h is the 
water level, q is the uniform lateral inflow of unit length (including the rainfall runoff), C is Chezy coefficient, R 
is hydraulic radius, α is momentum correction coefficient, g is gravitational acceleration. 

6-point implicit difference scheme is adopted. The water level and discharge at each grid point are not 
solved at the same time, they are alternately calculated in sequence instead, respectively marked as h and O. 
The format is unconditional stable, which can remain calculation stability under considerable Courant number, 
and a long-time step can be taken to save computational time (Wang, 2007). 
 
3 DEVELOPMENT AND APPLICATION OF COUPLING MODEL 
 
3.1 Basic information  

The study area is located in the Pearl River Delta (PRD) area, where the eastern and southern parts are 
alluvial plains while the western and northern parts are hilly terraces. The central-north area is of higher 
grounds and the terrain leans to the southeast direction. The whole area is densely covered by river networks, 
sluice 1# and 2# are located at the border where the inland and the outer rivers meet. The river system of the 
area is shown in Figure 2. 

The peripheral levee of the regional water system has already met the flood control standard, so the 
major problem of the water system is the internal drainage. With the speeding up of urbanization process, 
utilization properties of lots of lands have been changed, which will result in the decrease of water capacity of 
the region. When the flood and tide come at the same time, the excess water cannot be drained by the 
sluices, which will lead to waterlog disaster. Therefore, it is quite necessary to study this area. 
 
3.2 Development of the model 
  
3.2.1 Calculation of rainfall runoff  

The total area of the study region is 159.4 km2. The division of catchment areas should consider the 
topography, geographical features, confluence of the river network, drainage areas, arrangements of hydraulic 
projects, etc. There are 56 subcatches after model generalization, which are shown in Figure 3 (the serial 
number begins with 2). The runoff processes under different precipitation conditions at each outlet of the 
subcatches can be obtained by SWMM. 
 
3.2.2 Generalization of river network 

The basic principle of the river network generalization is that the results should reflect the hydraulic 
characteristics of the natural river network, which means that the water conveyance capacity and regulation 
capacity must be close to or exactly the same with the actual river networks or lakes. In the water system of 
plain river network areas, as river channels crisscross, there is no fixed direction of the flows. Moreover, the 
river system is of cyclic structure which is called as looping river network. Inside of the river network, there are 
lakes and hydraulic constructions such as embankments, sluices and culverts. In the calculation, the river 
network is usually generalized as three kinds of elements which are nodes, river channels and hydraulic 
constructions (Wang and Shi, 2000). 

According to the basic principles of river network generalization and data of main concerned channels, 
the river network of the studied area is generalized, which is shown in Figure 4. 
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Figure 2. Water system map of the study area. 

 

 
Figure 3. Schematic diagram of division of the study area. 

 
3.2.3 Calculating cases 

The study area is typical plain river network area, where the water channels crisscross. With a low-lying 
land, the elevations of the ground are almost the same. The rivers flow slowly and the flow directions are not 
fixed. The channel flow is largely influenced by boundary control structures and the outer tide. In flood season, 
when heavy rain occurs, self-drainage is quite difficult due to the high tide level, so water is stored in the river 
channels and drainage is effective only when the tide declines, thus waterlog often forms. Besides, when the 
astronomical tide, the waterlogging and typhoon meet together, more long-lasting high water level of the outer 
river and higher tidal level will come up, so is worse waterlogging disaster. There is no necessary relationship 
between the origins of waterlogging and the tide, as well as the probability that they occur. According to the 
drainage plan of the studied area, two working conditions are drafted. The first working condition is of 10-year 
waterlogging and 5-year high tide level. The second working condition is of 20-year waterlogging and 2-year 
high tide level. 

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print) 3977



 
 

  

 

In addition, pumping stations are added at the locations of 1# and 2# sluices. Three computational 
schemes are designed to analyze the water level changes of the inland rivers under conditions of no pumping 
station and different pump discharge capacites. 

1. Without pumping station. 
2. Except the two existing sluices, 2 pumping stations are added to improve the drainage capacity. The 

1# pumping station has a discharge capacity of 50m3/s, while the 2# pumping station has a 
discharge capacity of 20 m3/s. 

3. Except the two existing sluices, 2 pumping stations are added to improve drainage. The 1# pumping 
station has a discharge capacity of 95 m3/s, while the 2# pumping station has a discharge capacity 
of 30 m3/s. 

On the whole, calculation cases of this paper are listed in Table 1. 
 

Table 1. Calculation conditions of the model. 
Working conditions Rainfall Tide level Schemes  

I 10-year 5-year 
No pumping station 

A 
B 

2 20-year 2-year 
No pumping station 

A 
B 

 
3.3 Results and analysis 
 
3.3.1 Impacts of the pumping stations 

The locations of representative sections are shown in Figure 5. And the computational results of the 
highest instantaneous water levels of representative sections are displayed in Table 2 and Table 3. It can be 
shown that highest instantaneous water levels of the inland rivers are significantly decreased. It is also shown 
that the larger the pump discharge is, the more the water level decreases. 

 

 
Figure 4. Generalized river network in the study area. 
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Figure 5. Location of representative sections. 

 
Table 2. The highest water level of representative sections in the first calculation condition (m). 

Cross section number Cross sections location No pumping station A B 

1 branch8 7350m 3.02 2.91 2.67 

2 branch9 2300m 2.84 2.65 2.41 

3 branch12 1000m 2.86 2.71 2.46 

4 branch5 0m 2.98 2.86 2.54 

5 branch13 2900m 2.90 2.74 2.5 

6 branch14 3200m 2.90 2.74 2.49 

7 branch17 5800m 2.98 2.82 2.57 

8 branch19 1200m 3.02 2.88 2.64 

9 branch1 5350m 2.97 2.91 2.68 

10 branch2 3400m 2.97 2.91 2.67 

 
Table 3. The highest water level of representative sections in the second calculation condition (m). 

Cross section number Cross sections location No pumping station A B 

1 branch8 7350m 3.01 2.88 2.79 

2 branch9 2300m 2.77 2.68 2.58 

3 branch12 1000m 2.88 2.71 2.65 

4 branch5 0m 3.07 2.78 2.72 

5 branch13 2900m 2.91 2.76 2.70 

6 branch14 3200m 2.9 2.74 2.70 

7 branch17 5800m 2.88 2.84 2.74 

8 branch19 1200m 2.96 2.87 2.79 

9 branch1 5350m 3.01 2.86 2.74 

10 branch2 3400m 2.99 2.87 2.72 

 
3.3.2 Sensitivity analysis of rainfall and tide level 

(1) Without pumping station 
Water surface profiles of representative cross sections are given in Figure 6 and Figure 7. 
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Figure 6. Water surface profile of branch16. 

 

 
Figure 7. Water surface profile of branch 22. 

 
(2) Scheme A 

Water surface profiles of representative cross sections are given in Figure 8 and Figure 9. 
 

 
Figure 8. Water surface profile of branch 8. 

 

 
Figure 9. Water surface profile of branch 9. 
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(3) Scheme B 

Water surface profiles of representative cross sections are given in Figure 10 and Figure 11. 
 

 
Figure 10. Water surface profile of branch 9 

 

 
Figure 11. Water surface profile of branch 2. 

 
It can be found in the calculation that when there’s no pumping stations, some of the rivers have higher 

water levels in the 10-year waterlogging condition than that of the 20-year due to the higher tide level of the 
outer river. The range of these river reaches influenced by the tide level is shown in Figure 12(a). Besides, the 
ranges of river reach influenced by the tide level after the construction of pumping stations are given in Figure 
12(b) and Figure 12(c). It can be seen from the figures that with the help of pumping stations, effects from the 
tide level are largely decreased, and the water level of the inland river is mostly influenced by the precipitation 
and the pump discharge capacity. 

 

 
(a) without pumping station 

 
(b) scheme A 

 
(c) scheme B 

Figure 12. Influence scope of river surges. 
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4 CONCLUSIONS 
The rain-runoff process of river network and the drainage process of the study region were simulated by 

the SWMM rainfall-runoff model and MIKE11 hydrodynamic model in this paper. The main conclusions are as 
follows: 

(1) With the pump station, the water level of inner-river was decreased apparently compared with the 
case of no pump station. Moreover, the greater the pumping capacity is, the larger the drawdown 
value of the water level. 

(2) Without the pump station, parts of the river reaches have high water levels in case one compared 
with the case two, for the reason that the case one has a higher outer tide level. The influence of 
outer tide level is decreased obviously, and the water level is mainly influenced by rainfall and 
pumping capacity. 

(3) The results of this paper are reasonable, indicating the coupling model have an application value for 
flood control and drainage planning of other plain river network districts. 
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ABSTRACT 
 
Sustainable Urban Drainage Systems (SUDS) promoting numerous type of facilities in stormwater 
management. The facilities fall in three major group functions namely source control, site control and regional 
control. Control at source facilities like green roofs, permeable surface and so forth are purposely built to 
manage rainfall close to where it falls.    Benefits of green roof around the globe are very noticeable. This paper 
will discuss the performance of green roof during El-Nino period and runoff water quality from high intensity 
rainfall. Intensive green roof is constructed on the top of car parking roof. It was observe daily for one year. 
Results found that green roof’s contribution in cooling the indoor area of car park in tropical climate region varies 
during El-Nino period. Its performance relies to the surrounding temperature which during El-Nino, it can 
increase the surrounding temperature in the range 0.5oC to 2.0oC compared to normal period. However, during 
normal climate, green roof manage to reduce indoor area temperature in the range of 0.2oC to 2.0oC.   This 
study shows the green roof manage to perform very well in delaying the outflow during high intensity rainfall. It 
can retain 100% of rain water or up to 6 months ARI event. However, it depends on the frequency of the events. 
In term of improving the rain water quality, vegetation used did not gave significance difference in improving 
runoff water quality. Nonetheless the parameters studied still did not permit according to the National River 
Water Quality Standard for Malaysia and Malaysia Drinking Water Quality Standard (Raw Water).  This study 
concluded that application of green roof in urban infrastructure like parking areas and bus stops is very promising 
method for tropical climate countries. 

 
Keywords: Intensive green roof; runoff quality; stormwater management; sustainable rrban drainage systems (SUDS); 

thermal.  
 

 
1.0  INTRODUCTION 

Climate changes are providing many challenges around the globe and one of it is El- Nino. During the El- 
Nino, the weather is possible to be extremely hot and people have to face and deal with the rising temperatures 
and changes in rainfall patterns are among other effects. People have started to prepare for climate change and 
are looking for suitable adaptation measures to put in place to manage its impacts. Due to this scenario, the 
green roof becomes a consideration. Green roofs are vegetated roofs, or roofs with vegetated spaces. The 
benefits of green roof have been studied widely. It brings a lot of benefits in social, economic and environment 
aspect. Berndtsson (2010), Getter et al. (2007), VanWoert et al. (2005) and Villareal and Bengtsson (2004; 
2005) discovered that it also can create new habitat, filter pollution, decrease noise or noise buffer, improve air 
quality, reduce microclimate temperature and others as its benefits.  

Many studies show that green roof can be effective and sustainable facilities in order to reduce the indoor 
temperature (He et al., 2016; La Roche & Berardi, 2014) and retain rainfall runoff impacts in urban areas (Stovin 
et al., 2012; 2015; 2017; Grabowiecki et al., 2012; Liaw et al., 2011). The water quality of runoff that comes from 
the green roof also gain attention of researchers and they found that the performance of green roof  varies and 
relies on many factors like substrates materials, depth, slope, rainfall depth and ect. (Jung et al., 2016; 
Vijayaraghavan and Raja., 2014; Razzaghmanesh et al., 2014;). 
In tropical climate weather like Malaysia, receiving high rainfall throughout the year is normal. Availability of big 
area of tropical rainforest as a water catchment area do not mean that the country is free from the water 
resources issues. Even though average rainfall per year is 3500mm, the country has problems related to water 
scarcity and back in 2016, Malaysia faced El-Nino and it worsens the problem. Thus this paper discusses the 
response of green roof during the El-Nino in reducing the indoor temperature and the runoff quality of rainfall 
after the El-Nino period. 
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2.0 MATERIAL AND METHODS 
 

2.1 Study area - Car parking green roof 
The study has been done in Engineering Campus, University Sains Malaysia. It is located in the Peninsular 

Malaysia, the state of Penang. The implementation of intensive green roof in the real condition was applied on 
the top of car park.  Five similar structures of green roof test platforms were built on top of the car park roof for 
this study. These green roofs were constructed with dimension of 2.0m x 2.0m each.  Each platform represent 
intensive green roof with slope selected value at 2o and were constructed using bricks. Each platform consisted 
double layer of drainage cells (40mm each), covered with geotextile filter fabric. On top of this drainage layer. It 
was covered by 50mm depth of clean river sands approximately with 2.0mm grain size, followed with 200mm 
top soils which play a role as substrate layer. All open surfaces were covered with waterproofing membrane 
except for vegetation area to avoid leakage. At the lower end of the platforms, polyvinyl chloride (PVC) pipe of 
10cm in diameter was attached as outlet to direct runoff through the measuring device and for water sampling 
purpose. The difference among these platforms was based on the vegetation species that was planted. The 
first platform (GR1) was planted with the Arachis pintoi (Family: Fabaceae) and second platform (GR2) was 
leaved in bare as a control green roof platform.  Zoysia matrella (Family: Poaceae) was planted in the third 
platform (GR3), whereas in the fourth platform (GR4) consisted of Kalanchoe pinnata (Family: Crassulaceae).  
The mixture of these three species were planted in the fifth (GR5) and final platform.  

 
2.2 Data collection 

For thermal preliminary study, temperature under green roof car parking (indoor temperature) and under 
conventional car parking also was recorded and compared. Temperature was recorded daily in the morning 
(8.30am) and in the evening (5.00pm). Evaporation data was gained from evaporation pan logger which was 
located beside the green roof. The data was used in calculating potential evapotranspiration (ETo) in study area. 
For calculating ETo equation 1 has been used. 
 

ܶܧ ൌ ܭ ∗  (1)  ݊ܽܧ
 
Where ETo = potential evapotranspiration (mm/day), Kp = pan coefficient (Malaysian value is 0.75 as in Ng et. 
al. (2004)) and Epan = pan evaporation (mm/day).  

To gain rainfall and runoff data, measuring devices was installed only in GR5 due to the limited equipment 
and budget. Outlet of GR5 was installed with probe sensor which allowed continuous measurement of the water 
level, velocity and flow.  This probe was connected to a Sigma 950 Flowmeter data logger which recorded flow 
every minute and was downloaded to a computer hard drive twice a week. Surface of GR5 also was installed 
with the water level sensor to determine the level of ponding water if it occurred. Tipping bucket rain gauge also 
was installed on the car park green roof. The data were recorded every minute and downloaded to the computer 
hard drive after rainfall events or twice a week. Rainfall intensities were categorized based on Roslan (1995) as 
summarized in Table 1. For runoff water quality purpose, each outlet of green roof platforms were connected to 
the 5 liters barrel to allow grab sampling of runoff when needed. Substrate properties were gained from 
laboratory experiments. Parameters tested were bulk density (1.766 g/cm3), porosity (33.33%), permeability, k 
(5.084x10-4 cm/s) and maximum water capacity, WCmax (19.96%). 

 
Table 1. Rainfall intensity categorization (Roslan, 1995) 

Rainfall Intensity (mm/hr) Remarks 
< 6.5 Low 

6.5 - 13 Medium 
13 - 50 High 

> 50 Severe 
 

3.0 RESULTS AND DISCUSSIONS 
 
3.1 Thermal performance 

Figure 1, show the difference between car parking with green roof (GR) and car parking with conventional 
roof (SC). In average, temperature under green roof was 1oC higher than conventional roof during morning and 
evening. It is believe due to the insulation effect of the green roof. Temperature pattern recorded shows similar 
results to the study done by He et al. (2016). They found that there were two phases in temperature development 
in green roof. The first phase was from 7.00am to 3.00pm in which the temperature sequence was; indoor air > 
inner surface of structural layer > roof local air > middle soil layer > outer surface of structural layer. During this 
period, green roof acted as a heat sink. Second phase of temperature development, He et al (2016) found that 
from 3.00pm to 7.00pm, the sequence was from indoor > inner surface of structural layer > outer surface of 
structural layer > middle soil layer > roof local air. It showed that green roof performed as a layer of thermal 
resistant.  
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Result gained in this green roof car parking study during morning (represent first phase) and evening 
(second phase) temperature confirmed the scenario. Base on this comparison of temperature it shows that 
green roof’s contribution in cooling the indoor area of tropical climate region varies. Its performance relied on 
the surrounding temperature which in Figure 1, shows clearly the difference between February until April 
compared to May. It was notable on March 2016; Malaysia faced El-Nino and ended in April 2016.  El-Nino 
effect can increase the surrounding temperature in the range 0.5oC to 2.0oC compared to normal period 
(Tangau, 2016). It confirms that performance of green roof as a thermal mitigation during El-Nino, slightly 
decreases due to the temperature was higher than normal and consequently it shows the limitation of green 
roof. 
 

               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Temperature comparison between green and conventional roof    
 

3.2 Flow attenuation  
The total of 60 events during monitoring period occurred and measured by the rain gauge located in study 

area. Intensity Duration Frequency (IDF) Curve was developed based on Rainfall Station at Sungai Simpang 
Ampat Tangki in Penang. The selection of the station was due to being the nearest in the study area. Even 
though 57 events recorded shows one to six month ARI but most of the events had high rainfall depth (Figure 
2) and many events were categorized as high intensity (Figure 3).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Rainfall depth during study period 
 
 

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print) 3985



 
 

  

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0

2

4

6

8

10

12

5 25 45 65 85 10
5

12
5

14
5

16
5

18
5

20
5

22
5

24
5

26
5

28
5

30
5

32
5

34
5

36
5

38
5

40
5

42
5

44
5

46
5

48
5

F
lo

w
 (

lp
s)

R
ai

nf
al

l d
ep

th
 (

m
m

)

Time (minute)

Rainfall (mm) Flow  (lps)

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Rainfall intensity 
 

However, outflow runoff did not occur from the green roof in every events. It might be due to the substrate 
capability in holding water. The high potential of soil substrate in holding water is believed due to high value of 
potential evapotranspiration rate (ETo). In average evapotranspiration rate (ETo was at 29.64mm/day in study 
area. Event on 3rd June 2016 reached 1 year ARI with the intensity of 17.47 mm/hr and green roof managed to 
delay (1 hour) the existence of rain water outflow and it gave a good sign in stormwater management.  Figure 
4 show there was attenuation of the runoff during the event. It was proven that the green roof manage to slow 
down the volume of the rain water before it reach to the ground. Consequently, it gave time to the surface runoff 
on the ground that occurred directly from the rainwater flow to the nearest water bodies or downstream area.  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Outflow occur after one hour of rainfall 
 
3.3 Runoff water quality 

Vegetation used in this study showed various responses in treating rain water that fall onto the green roof 
surface (Figure 5). Four parameters studied were analyzed namely as Total Phosphate (TP), Total Nitrogen 
(TN), Ammoniacal Nitrogen (AN) and Potassium (K). Median concentration of TP in the outflow water of each 
green roof platform was varied. It was found to be higher compared to the rain water. The similar trend was 
gained for AN, TN and K too. It is believe that the substrate of the green roof itself which is the oil, contains 
some amount of this pollutants and it was flushed by rain water that flow through the substrate and become 
outflow of green roof. Although vegetation managed to uptake the nutrient, but it still does not give significant 
difference due to only small amount were consumed by the plants itself. Phosphate is an essential nutrient in 
providing energy for plants. It occurs naturally in low level and can quickly bonds to soil particles. The values of 
TP were found to be lower compared than study done by Ayub et al. (2016; 2015), Speak et al. (2014) and 
Vijayaraghavan et al. (2012).  Higher concentration of TN, AN and K in outflow water was consistent with a 
study done by Razzaghmanesh et al. (2014) in South Australia. They also found potassium content in outflow 
runoff of green roof system were higher than influent. Whereas the concentration of nitrogen found to increase 
with time during the study period and it prove that green roof system can act as sink of nitrate (Gabriel et al., 
2016; Razzaghmanesh et al., 2014; Berndtsson et al., 2009). Result in Figure 5 also shows that vegetation 
plays a minor role in improving rain water quality. Other than that, it can contemplate that the substrate still 
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haven’t stabilize to act and perform for better treatment of the rain water. Nonetheless the nutrients’ 
concentration in outflow were high in this study. The values that were permitted in the Malaysia Drinking Water 
Quality Standard (Raw Water) (Ammonia, 1.5mg/L & Nitrate, 10.0mg/L) and the runoff water quality fall in group 
2 of the standard.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Boxplot of the pollutants concentration in every green roof platform compare to rain water 

 
4.0 CONCLUSIONS 

Green roof as a thermal mitigation is proven due to the ability in reducing indoor temperature especially 
during the sunny days (May – December 2016). However, the performance relies on the surrounding 
temperature and there is the limitation of the green roof in thermal mitigation (El-Nino period). Green roof’s 
contribution in cooling the indoor area of tropical climate region varies. Other than that green roof manages to 
delay the rain water from reaching the ground so it gives time to the ground surface runoff flow to the 
downstream first. For the outflow water quality it is believed that the water quality rely more to the substrate 
significantly. The stabilization period of the substrate and green roof needs to be carried out in the next phase 
of this research. 
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ABSTRACT  
 
Rainfall-runoff is an important hydrological process that is complex in its nature involving in-depth study of 
hydrological and meteorological parameters. Hydrological processes are dynamic, chaotic and non–linear. 
Accurate estimation of hydrological parameters could be carried out with the study of influence of 
meteorological parameter by performing sensitivity analysis and so on. Generally, the process governs with 
rainfall as the major factor, however in monsoon season some meteorological parameters may have the 
greater influence which may lead to enhance the model accuracy in the estimation of runoff. Some 
meteorological parameters; temperatures, relative humidity and pan evaporation could influence the process. 
The rainfall and runoff may affect evaporation, humidity and temperature. Meteorological parameters like 
maximum temperature and minimum temperature affect humidity, evaporation and runoff of a catchment. This 
paper is mainly focuses on the study of influence of meteorological parameters in the rainfall-runoff processes 
and importance of meteorological parameters in such process. The tools used here are Multiple Linear 
Regression and soft computing tool, Artificial Neural Network. The study area selected for the purpose is 
Shivade catchment of upper Krishna basin, Maharashtra State in India. The meteorological parameters 
collected includes pan evaporation, average temperatures, average wind speed, relative humidity and 
hydrological parameters; rainfall and runoff. The correlation analysis amongst all the parameters is carried out 
to perform overall sensitivity analysis. The effect of all the parameters on each other is studied. The 
meteorological parameters namely maximum temperature and minimum temperature along with some other 
parameters have been studied using MLR and ANN model building. Amongst the two methods, ANN models 
exhibited better estimation of both hydrological and meteorological parameters. The statistical analysis and 
the qualitative analysis showed influence of parameters on each other, however few parameters do not show 
correlation but are significant in the processes as observed in model development.  
 
Keywords: Hydrological parameters; meteorological parameters; average rainfall; runoff; temperature. 
 
 
1 INTRODUCTION  

The estimation of hydrological and meteorological parameters is a challenging task. Meteorological 
processes and hydrological processes are dynamic, chaotic and non–linear. Estimation of these parameters 
plays vital role and majorly contributes in the influence of these process and depends on the accurate 
measurement of parameter. The accuracy in the estimation can be increased by using greater data length 
which was tried to achieve in the present study. The dependability of the hydrological process and 
meteorological process is important to decide upon role which parameters are having more influence on each 
other and vice versa. The same was analyzed by statistical tool, MLR and compared with ANN. Over few 
decades, ANN has been a popular software tool explored by many researchers for hydrological problems. 
Thirumalaiah and Deo (2000), Chang et al. (2002), Rajurkar et al. (2004), Srinivasulu and Jain (2006), Zhang 
and Chiew (2009), Charhate and Kote (2009), Googhari et al. (2010), Londhe and Charhate (2010), 
Jothiprakash and Magar (2012), Wu (2011), Arunkumar and Jothiprakash (2014), Fathima and Jothiprakash 
(2014), Mehr et al. (2015), Chang et al.(2014), Wu et al.(2014), Aichouri et al. (2015), Pandhiani (2015), Patel 
and Ramachandra (2015), Youngmin et al. (2015) and others showed the capability of ANN in solving 
hydrological problems. 
 The meteorological factors that affect runoff are temperature, relative humidity, wind velocity, pressure 
difference. Maximum temperature is considered as the highest temperature recorded during a specified period 
of time. The most common reference is to the daily maximum temperature. Average wind speed and time-
averaged wind speed are averaged over a specified time interval. The mean wind speed varies with elevation 
above mean sea level and the averaging time interval while a standard reference elevation is 10 m and a 
standard time interval is 1 hour. The best model for meteorological parameters can be developed with Jordan 
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Elman Network as recommended by Afzali et al. (2011) and Multilayer Perceptron as recommended by 
Abhishek et al. (2012) and Baboo and Shereef (2010). A comparison between the MLR and ANN model for 
the same input shows that ANN models produced better correlation between the estimated parameter and the 
observed parameter as seen in De and Debanth (2009). Hence capacity of ANN was judged as a better 
estimation method than the traditional MLR method as recommended by Mohammed (2011) and by El Shafie 
et al. (2011).  

The following section gives an idea about the best correlation of the meteorological parameters and their 
importance in the process. This paper discusses the correlation amongst all the parameters and also the 
effect on the process of runoff to estimate the accurate values in the process. The correlations of the 
parameters were found out by building models on the database of Shivade catchment. The common statistical 
methods were used for initial analysis. The MLR and ANN models were developed by studying the influence 
of each parameter. 
 
2 METHODOLOGY AND DATA COLLECTION 

In this paper two approaches were used to solve the problem, the Multiple Linear Regression (MLR) and 
Artificial Neural Networks (ANN). Over few decades, ANN has become one of the promising software 
computing tool in hydrological and meteorological parameter estimations. MLR is a method use to model the 
linear relationship between a dependent variable and one or more independent variables. The dependent 
variable is sometimes also called the predict, and the independent variables the predictors. Artificial neural 
networks are 'biologically' inspired networks and works on the cognition of human brains. The ANN has the 
ability to learn from empirical data information. The most common types are feed forward neural networks 
(FFNNs), typically shown in Figure 1 and recurrent neural networks (RNNs). Various types of neural network 
architectures can be used in the estimation process e.g. single-layer feed forward networks, multi-layer feed 
forward networks, recurrent neural networks, radial basic function, Jordan Elman network, etc. 

The area selected for the present study was Upper Krishna basin located in the western regions of 
Maharashtra, India, lying between latitudes 13° 07' N and 19° 20' N and longitudes 73° 22' E and 81° 10' E. 
The study area has eighteen rain gauge stations in its catchment (Figure 2). The total area of Shivade 
catchment is 3261.03 sq. km with 67 km length of river in watershed up to gauge discharge site as 20.82 km. 
The average annual rainfall in the Krishna basin is 784 mm. The south west monsoon sets in the middle of 
June and withdraws during mid of October. About 90% of the rainfall occurs during the monsoon period of 
which more than 70% of the annual rainfall occurs during July, August and September. The duration of data 
for the present study is 2002 to 2010 (9 years). 
 

 
Figure 1. Feed forward neural network. 

 
 The models were developed with Artificial Neural Network (ANN) and MLR with similar data divisions with 
various combinations of inputs after studying the correlation amongst each other. The performance of the 
models was judged by quantitative analysis by evaluating them with correlation coefficient and error measures 
such as Mean Absolute Error (MAE), Mean Square Error (MSE), and Root Mean Square Error (RMSE). The 
model performance was also judged by qualitative analysis by drawing scatter plots and time series plots. 
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Figure 2. Map showing catchment details of Shivade Catchment, Krishna Basin Maharashtra, India. 

 
 
3 RESULTS AND DISCUSSIONS 
 Initially data was analyzed by performing data trend analysis and gap filling by interpolation. The data 
was analyzed statistically by normalizing the values, performing analysis for standard deviation, kurtosis, 
median, mean and correlation. The estimation process involves developing models to find the correlation of 
each parameter to decide upon the maximum impact of input parameter. This was done to check the influence 
of each parameter in the hydrological process. This study has given an insight of all parameters and influence 
on each other, this helps to build the required models and the unnecessary data input will be restricted. The 
MLR and ANN models has been developed using the data of monsoon months for a period 2002 to 2010. 
From the available data ,70% of the observed values were considered to build the model while 30% of unseen 
data was used to test the models. The data division was finalized based on the number of trail conducted to 
arrive at the most accurate results. The meteorological parameters considered for analysis are pan 
evaporation, relative humidity, dry bulb temperature, minimum temperature, wet bulb temperature, maximum 
temperature and average wind speed. Data of nine years was processed to obtain the results and to arrive at 
a conclusion. For arriving at the most accurate estimation the correlation analysis was performed on all the 
parameters using statistical tools. The results of inter correlation of each hydrological and meteorological 
parameters are given in Table 1. 

 
Table 1. Correlation of hydrological and meteorological parameters. 

PARAMETERS AVG MPS HQC MHS MWS MEP MTD MTN MTW MTX 
AVG MPS 1 0.712 0.412 0.280 -0.426 -0.501 -0.196 -0.358 -0.565 

HQC 0.712 1 0.318 0.222 -0.419 -0.398 -0.213 -0.293 -0.465 
MHS 0.412 0.318 1 0.025 -0.539 -0.716 0.092 0.045 -0.636 
MWS 0.280 0.222 0.109 1 0.043 -0.125 0.383 -0.071 -0.123 
MEP -0.426 -0.419 -0.539 0.043 1 0.778 0.335 0.523 0.820 
MTD -0.501 -0.398 -0.716 -0.125 0.778 1 0.174 0.653 0.907 
MTN -0.196 -0.213 0.092 0.011 0.335 0.174 1 0.297 0.235 
MTW -0.358 -0.293 0.045 -0.071 0.523 0.653 0.297 1 0.604 
MTX -0.565 -0.465 -0.636 -0.123 0.820 0.907 0.235 0.604 1 

 
where AVG MPS=Average Rainfall in mm, HQC=Runoff in m3/sec, MHS= Relative Humidity %,              
MWS= Maximum average Wind Speed, MEP= Pan Evaporation in mm, MTD= Dry Bulb Temp,                  
MTN =Minimum Daily Temperature, MTW = Wet Bulb Temperature, MTX= Maximum Daily Temperature ºC. 
 
 From Table 1, it is seen that the hydrological parameters i.e. AVG MPS (rainfall) and HQC (runoff) have 
positive correlation with MHS (relative humidity) and MWS (wind speed). In the case meteorological 
parameters MEP has positive correlation with MTD (dry bulb temperature), MTN (minimum temperature), 
MTW (wet bulb temperature) and MWS while MHS has positive correlation with MTN,MTW and MWS; MTD 
has positive correlation on MEP,MTN,MTW,MTX (maximum temperature); MTN has positive correlation on 
MEP, MHS, MTD, MTW and MTX; MTW has positive correlation on MEP,MHS,MTD,MTN and MTX; MTX has 
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positive correlation on MEP, MTD, MTN, and MTW and MWS has positive correlation on AVG MPS, HQC, 
MEP and MHS. From above it is observed that HQC is closely affected by meteorological parameters such as 
relative humidity and average wind speed. The analysis was carried out taking into account these factors also. 
The following analysis gives estimation of some of the hydrological and metrological parameters considering 
their influence on each other. The negative correlation between some parameters indicates that they hardly 
contribute in the processes, especially in estimating runoff however estimation of such parameters may be 
useful in determining the other aspect of the process. 
 
3.1  Runoff (HQC) 
 As seen in Table 1, HQC (runoff) has positive correlation with three parameters namely average rainfall 
(AVG MPS), relative humidity (MHS) and average wind speed (MWS). MLR models were developed using all 
three parameters and also by eliminating the parameters having lower correlation one by one. It was observed 
that the correlation between actual values of HQC and estimated values of HQC found to be highest when 
AVG MPS alone was used to develop the MLR having correlation coefficient=0.702 and less error measures 
with this combination. The resulting equation is shown in Eq. [1]: 

 
                                         HQC=37.27833741 +9.880741453 AVG MPS                           [1] 

 
 ANN model was developed using similar data division and similar process discussed above. Various 
networks were tried to achieve maximum accuracy however model developed with Jordan Elman network 
exhibited good results with correlation coefficient for testing as 0.865 and the MAE value 62.46. The 
correlation of the observed HQC and estimated HQC by ANN found to be good. The time series plot between 
observed values of HQC and estimated values of HQC by MLR and ANN are plotted in Figure 3. The 
estimated values of HQC using ANN are in agreement with observed values. The results of the models testing 
are given in Table 2 showing the performance of all the input methods used in the model building. From Table 
2 it is seen that addition of some meteorological parameters having positive correlations contributed in the 
accuracy of model. 
 

Table 2. Results for runoff estimation analysis. 

INPUT OUTPUT 

TESTING 

r MAE MSE RMSE 

MLR ANN MLR ANN MLR ANN MLR ANN 

AVG MPS HQC 0.702 0.843 73.61 57.828 16053.5 10569.7 126.70 102.80 

AVG MPS, MHS HQC 0.698 0.848 79.01 67.200 16698.4 12793.1 129.22 113.10 

AVG MPS, MHS,MWS HQC 0.693 0.865 80.71 62.462 16967.8 11358.6 130.26 104.57 

 

 
Figure 3. Time series plot of estimated runoff by MLR and ANN using input AVG MPS, MHS and MWS. 

 
3.2 Estimation of meteorological parameters 
 The MLR and ANN models were developed for seven meteorological parameters namely pan 
evaporation (MEP), relative humidity (MHS), dry bulb temperature (MTD), minimum temperature (MTN), wet 
bulb temperature (MTW) and maximum temperature (MTX). However, in this paper model performances of 
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two meteorological parameters namely maximum temperature (MTX) and Minimum temperature (MTN) are 
presented. 
 
3.3 Maximum Temperature (MTX) 
  As seen in Table 1 Maximum temperature (MTX) has positive correlation with four parameters namely 
dry bulb temperature (MTD), pan evaporation (MEP), wet bulb temperature (MTW) and minimum temperature 
(MTN). MLR models were built using all four parameters and also by eliminating the parameters having lower 
correlation values one by one. This was done to check the influence of inclusion of parameters. It was 
observed that the correlation between estimated and actual values of MTX was found to be highest when 
MTD and MEP was used in MLR model development. Hence the MLR model developed with MTD and MEP 
is considered as acceptable model with correlation (r) for testing 0.77 and mean absolute error 1.145. The 
equation of the MLR model developed is given in Eq. [2]: 

                                                   MTX=8.311223+0.676894MTD+1.244856MEP                        [2] 
 
 The ANN models were developed using all the parameters having positive correlation and then by 
eliminating the parameters with lower correlation one by one as discussed in case of MLR model building. 
Hence the ANN model has been developed with 4, 3, 2 and 1 parameter as input. Similar data division was 
used as MLR, to this data Jordan/Elman network showed good results. The transfer function employed was 
Tanh Axon with 1 hidden layer. The correlation between the actual MTX and the estimated MTX is highest 
when the ANN model was built using MTD and MEP. The correlation of testing for this model is 0.89 and its 
MAE is 1.065885 which outperforms the MLR model results. The results obtained by MLR and ANN models 
are tabulated in Table 3. The qualitative analysis of this model is as shown in Figure 4. The time series plot 
between estimated observed values of MTX by ANN are plotted in Figure 5. The estimated values of MTX are 
matching well with the observed values of MTX. 
 

Table 3. Results of MLR for maximum temperature. 

INPUT OUTPUT 
TESTING 

r MAE MSE RMSE 
MLR ANN MLR ANN MLR ANN MLR ANN 

MTD MTX 0.755 0.881 1.213 1.1455 2.3594 2.04165 1.536 1.4288 

MTD,MEP MTX 0.77 0.897 1.145 1.0658 2.0632 1.80873 1.436 1.3448 

MTD,MEP,MTW MTX 0.764 0.887 1.201 1.1145 2.3077 1.97640 1.519 1.4058 

MTD,MEP,MTW,MTN MTX 0.764 0.891 1.200 1.0838 2.3072 1.87985 1.518 1.3710 

 

 
Figure 4. Scatter plot of observed maximum temperature versus maximum temperature estimated by ANN. 
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Figure 5. Time series plot of observed maximum temperature and estimated maximum temperature by ANN 

with input MTD, MEP. 
 

3.4 Minimum Temperature (MTN) 
 As seen in Table 1, Minimum temperature (MTN) has positive correlation with six parameters namely 
average wind speed (MWS), pan evaporation (MEP), wet bulb temperature (MTW), maximum temperature 
(MTX), dry bulb temperature (MTD) and relative humidity (MHS). MLR models were developed using all six 
parameters and also by eliminating parameters one by one having lower correlation. It is observed that the 
correlation between estimated and observed values of MTN are maximum when MWS, MEP and MTW and 
MTX are used. The resulting correlation of MLR model developed with MWS, MEP and MTW was found to be 
0.631 and mean absolute error 1.215. The accuracy obtained by model was very less. The equation of the 
MLR model developed is given in Eq. [3]: 
 
                   MTN= 14.07557 + 0.340334MWS + 0.446377MEP + 0.118186MTW + 0.123067MTX   [3] 
 
 Based on the correlation analysis and MLR model building, similar parameters were used to developed 
ANN models keeping similar data division. ANN model was built using 70% data for training and 30% data 
was used to test the accuracy of the model. The network used to develop this model was Jordan/Elman. The 
transfer function employed was Tanh Axon with 1 hidden layer. The maximum accuracy was found with 2000 
iterations. The correlation in testing for this model exhibited 0.7126 and its MAE found to be 1.075449. It is 
seen that model developed with ANN performed better in this case. The qualitative analysis of this model is 
shown by drawing scatter plot (Figure 6) where it is seen that estimated values are very close to the observed 
one. The correlation of estimated and observed MTN by ANN found to be good. The time series plot between 
observed and the estimated values by ANN as seen in Figure 7 confirms the trend followed by the estimated 
values.  
 
 

Table 4. Results of minimum temperature. 

INPUT OUTPUT 

TESTING 

r MAE MSE RMSE 

MLR ANN MLR ANN MLR ANN MLR ANN 

MWS MTN 0.244 0.285 1.380 1.362 3.617 3.548 1.901 1.883 

MWS,MEP MTN 0.567 0.633 1.203 1.135 2.627 2.374 1.62 1.540 

MWS,MEP,MTW MTN 0.575 0.649 1.215 1.152 2.564 2.472 1.601 1.572 

MWS,MEP,MTW,MTX MTN 0.631 0.655 1.229 1.113 2.691 2.297 1.64 1.515 

MWS,MEP,MTW,MTX,MTD MTN 0.573 0.639 1.229 1.117 2.693 2.372 1.641 1.540 

MWS,MEP,MTW,MTX,MTD,MHS MTN 0.579 0.596 1.227 1.182 2.680 2.583 1.637 1.607 
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Figure 6. Scatter plot of observed minimum temperature versus minimum temperature estimated by ANN. 

 

 
Figure 7. Time series plot of observed dry bulb temperature and estimated dry bulb temperature by ANN with 

input MWS, MEP, MTW, and MTX. 
 
4 CONCLUSIONS 

The correlation amongst all the hydrological and meteorological parameters and their effect on each 
other was studied using statistical analysis. The influence of these parameters plays vital role in hydrological 
process and their influence on each other was largely felt during model building. Based on correlation 
amongst some meteorological parameters, the model building was executed for maximum temperature, 
minimum temperature, wet bulb, dry bulb temperature and relative humidity. Hydrological parameters namely 
average rainfall and runoff were modeled using MLR and soft tool, ANN. The number of input parameters in 
building models were increased one by one according to their correlation effect. The parameter having highest 
positive correlation was used to develop the models. The hydrological models developed i.e. runoff using ANN 
showed good correlation when tested on an unseen data. Similarly, the maximum and minimum temperature 
estimation also proved that ANN is capable in estimating values close to the observed with high accuracy in 
such meteorological process too. Also, addition of meteorological parameters such as relative humidity, 
average wind speed has shown considerable effect as reflected in model output giving improved results. The 
main aim of this study was to see the effect of influence on each other. It was observed that even some 
parameters showed minimum correlation, however their contribution was largely felt and reflected in giving the 
accurate results. 
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ABSTRACT 
 

The hydrological processes in the urban drainage are known as rainfall, runoff, and infiltration. This research 
aims to find out how the relationship of soil density, initial moisture content, and slope of lands influences the 
rain, runoff, and infiltration process.  This research is conducted in a laboratory using a rainfall simulator plot 
tank. The size of the plot tank is 1.17 m x 0.97 m x 0.30 m. The plot tank is filled with soil of the same specific 
gravity for different initial water content in soil compaction land slope variation. The experiment carried out on 
steady rain intensity where every point in the plot is assumed to have  uniform velocity. The method describes 
the compaction of urban land using prototype that influences the infiltration rate. Runoff processes. Infiltration 
rate was calculated by reducing intensity of rain and runoff as output data from a running rainfall simulator. 
The processes are explained in water balance concept in urban drainage. Based on the results of the study, 
the compaction and the slope will positively affect against the runoff where the higher the compaction, the 
greater the runoff will be.  However, it  will negatively affect the infiltration.  
 
Keywords: Soil compaction; infiltration rate; runoff; rainfall simulator; urban drainage. 

 
 
1 INTRODUCTION 

Rainfall in urban areas uses drainage principle of which rainfall is contained and controlled to prevent 
floods and runoffs. Rainfall will be contained and let pass as described by the continuity law of the water 
balance concept. Water balance concept explains the hydrological process, runoff, surface puddle, 
evaporation and infiltration (Bedient, 2008). Surface puddle is counted as runoff while evaporation is 
disregarded which leaves us with infiltration as the only loss factor.  

The limitation of lands in urban areas decreases the environmental support. Conventional urban 
drainage concept expects rainwater to be conveyed away as quickly as possible to underground pipes or 
main drainage waterways or even to the sea. However rainfall can also be absorbed temporarily by soil and 
the infiltration for water storage can be planned in urban areas.   

Buildings in urban areas affect soil density (Fox et al., 1997) Increased soil density will make the 
infiltration lower. Runoffs will be much larger because water flow depends on land slope, land condition, and 
rain itself. Rainwater will flow for sometimes, at times, water will reach the maximum level depending on 
drainage conditions in lands, waterways, or pipes.  

Rain process and runoffs in overland flow are influenced by rain intensities, land slope, and condition. 
The land condition, which includes soil texture variations, structure, and layer interface (Ames et al., 2001), 
among other effects, affect rain process, runoffs, and infiltration. Land slope also affects runoffs and 
infiltrations (Chen et al., 2011) so does land prior conditions, such as initial water content.  

The problem is how those 3 parameters simultaneously affect rain process, runoff, and infiltrations which 
is connected by time using a rain simulator tool. The purpose of this research is to understand runoff and 
infiltration conditions in initial water content using density and slope as variables. Another purpose includes 
getting the statistics between runoff and infiltration as the mentioned parameters, while also gaining the time 
analysis, which happens in rain process, runoff, and infiltration.  

 
2 MATERIAL AND METHOD 

 
2.1 Overland flow concept  

Rain process, runoff, and infiltration happen in overland flow drainage. This is a concept where continuity 
law meets momentum law. Infiltration acts as a reduction factor in rain process and runoff. 

 
Continuity equation for overland flow (Bedient, 2008) 

                                                                                                                                                                   [1] 
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With i-f is the rainfall rate minus infiltration (mm/s), qo is the unit width flow rate (m2/s/m’), yo flow 
depth (m). 
 
2.1.2 Momentum equation 

Considering the steady uniform flow and free air pressure are disregarded, then the basic slope equals 
the energy line slope. Momentum equation was taken from second Newton law in Eq. [2] : 

 

F =
d(mv)

dt
 

                             

                              
ௗሺ௩ሻ

ௗ௧
ൌ ݉

ௗ௩

ௗ௧
 ݒ

ௗ
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  [2]                                            ݔ∆ݍݒߩ

 
Equation becomes: 
 

                                        So – Sf = 0                                                       [3] 
 
Then : 
 

                                                ܳ ൌ	
ௌభ/మ


.                                                                   [4]ܣ

 
The surface runoff phenomenon is shown through the water balance theory in the continuity equation 

below: (Bedient, 2008) 
 

Real rainfall rate = Puddle + evaporation + infiltration + surface runoff   
 

The puddle is included in surface runoff and disregarding evaporation, then effective rainfall rate 
obtained equals to surface runoff as shown below: 
 

Effective rainfall rate = Real rainfall rate – (infiltration and surface runoff). 
 

Based on that, time distribution is essential to be known in effective rainfall rate. Time distribution of 
effective rainfall rate, which was interpreted as runoff and infiltration, was obtained and observed through 
uniform flow rate in constant rainfall. 

Water balance in the relationship between rainfall rate and infiltration as shown in Figure 1. 
 

 
Figure 1. Water balance in overland flow. Source : Gupta ( 1989, p.87). 

 
2.2 Runoff  

Runoff can be described as water flow from land to surface waterways. Runoff which flows to channel is 
dependent on time. Effective rainfall, which flows from land to waterways is called overland flow (Subramanya, 
2002). Whereas overland flow which goes to smaller waterways and then joins a bigger waterway with the 
hydraulics flow of an open waterway is called surface runoff. Time, which differentiates between the two, 
depends on certain parameters on land and waterways during the water flow process.  

Different processes of overland flow and surface runoff occurred from q and flow media. In overland flow, 
q is unit of width flow rate, whereas surface runoff is Q with wetted media. Flow depth in overland flow 
occurred because of infiltration, whereas flow depth in surface runoff is water depth from the ground channel. 
Based on that, the parameters that affect each flow are different. From this runoff process, the time-
concentration in each case will be solved differently, although still in water balance concept. 
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2.3 Infiltration  

A loss water factor which affected the amount of surface runoff will be different with the overland flow. In 
a surface runoff, water loss occurred because of waterways curves, basic material, ground roughness, and 
dimension. Whereas in overland flow the affecting factor of water loss was infiltration, then for overland flow 
was rain process and runoff.  

Infiltration process was observed through the reduction of stored runoff from rainfall rate (Wilson, 1990). 
Factors affecting infiltration rate are soil characteristics, land lid condition, and slope. Land lid condition can be 
observed through the density, which can be measured by its dry weight. The land characteristic can be 
observed through certain parameters, pores value, saturation degree, porosity, specific gravity, water rate, 
and land slope.  

Infiltration rate was affected by land slope. The steeper the land, the lower the infiltration rate was (D.M, 
1997). If infiltration rate was lower, then concentration time, which is the time when the soil condition reaches 
maximum and constant, was longer.  

Infiltration rate models: 
a. Kostiyakov Model 

Kostiakov Model relates infiltration to time as a power function while excluding initial and final 
water content (constant infiltration rate). Infiltration rate and equation are shown below: 

 
ܨ        ൌ                                                            0 < b < 1                                                      [5]ݐܽ

 

       ݂ ൌ
ௗி

ௗ௧
ൌ  ିଵ                                                                                                                       [6]ݐܾܽ

 
Where a and b are constants that depend on the soil characteristics and initial water content. 

These constants cannot be measured before and usually obtained by pulling a straight line on a 
figure paper for empirical data or by using the smallest quarter method.  

 

b. Horton Model (1930), (Subramaya, 2002): 
 
           ݂௧ ൌ ݂  ൫ ݂ െ ݂൯݁ି௧                        for  0 ≥ t ≤ td                                                                 [7] 

 

 
Where : 
fct =  the infiltration capacity or potential infiltration rate (cm/h)  
fcf   =  the final constant infiltration rate (cm/h) 
fco   = the infiltration capacity at (cm/h) t = 0 
Kh   = geophysics constant which depends on soil characteristics and land lid  
td=  rainfall time 
 

2.4 Time of concentration 
Time of concentration had two definitions based on the development of kinematic wave theory (Bedient, 

2008), which are 1) time of concentration is the time required for water to travel from the most hydraulically-
remote portion of a watershed to the channel, and the second definition is 2) time of concentration balance 
time in a watershed with constant rain intensities. Time of concentration according to (Richard, 1984) is the 
time required for water to travel from the most hydraulically-remote portion of a watershed to a location of 
interest. 

In land, time of concentration equation is: (Richard, 1984) 
 

                                   ܶܿ ൌ 0,04690. ܮ
,ସସହ. ݅ଶ

ି,ଶଷଵ. .,ହହଵߠ ܵ
ି,ଶଶ                                                         [8] 

 
Where 
Lf =  overland flow path of distance 
i2 = 2 years rain intensities 
Sfm = slope 

=  stored flow variable 
 
2.5 Parameter optimization  

Januardin (2008) states that the higher the soil density, the lower the rate of infiltration. Soil density 
occurred because of collisions between rain and the soil surface. Vegetated soil usually had a higher 
infiltration rate than the open soil surface. This was caused by vegetation roots which make porosity higher 
which had higher rain collision energy so infiltration rate was higher.  

Soil density also affected surface runoffs. Soil density occurred in urban areas because urban land was 
used a lot more than rural areas, such as crowded human habitation and skyscrapers (Noorvy, 2014)  
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Pore size and amount affect infiltration rate as well. The more and bigger pores make higher infiltration 
rate. In accordance with that, clay is dominated with small pores whereas sand is with big pores. So it can be 
concluded that infiltration in sandy soil is a lot higher than those in clay  (Lipiec, 2006) 

   

  
Figure 2. (a) Soil height measurement; (b) Soil density measurement. 

 
As much as 120 kg of soil was mixed with water where the amount was 20% of the soil used, which 

then was divided into 3 density layers following the Proctor Test rule. Soil used in this experiment had to 
be dried and passed through filter no. 10. Put the soil into the testing box, and compact it using a 2.9 kg 
pounder. 

The initial water content variable was obtained by determining water mix in the experimental soil, 
which was 20% water from soil weight. After mixing was done, groundwater was flowed through the still 
soil for 2 hours, 2 days, and 4 days with the initial water content measured at each time.  

A concrete weight was dropped to soil layers from 10 cm above ground. The weight falls horizontally and 
vertically to make the density to be spreaded evenly. Soil heights before and after pounding were measured 
by dividing the soil to 3 parts horizontally and 2 parts vertically. After the first layer was pounded, the second 
layer was added. The same thing goes for the third layer.  

Soil density was measured in 2 spins (d1), 4 spins (d2), and 6 spins (d3) in order to get various densities 
in an evenly pondered soil. Each of the three soil layers was pounded evenly. Each density gets 4 initial water 
content treatment, w1, w2, w3, and w4. Every density and initial water content get 3 slope treatment: S1, S2, 
and S3. Experiment design is shown in Table 1.  

 
2.6 Experiment set up 

The relationship between runoff amount and time (t) will be obtained as the result. The relationship 
between rain and runoff was that the higher the rainfall rate, the higher the runoff is and vice versa. When 
runoff is constant, the soil will be water saturated and has constant infiltration as well.   

The relationship between rain and runoff  is often used in hydrological design and analysis using factors 
that affect runoff as a parameter. Hydrography is a Figure that shows height, amount, velocity, and other 
characteristics of time-dependent water.  

The experiment was done in a hydrological laboratory in Water Engineering of Brawijaya University 
using a rainfall simulator S12-MKII Hydrology System from Armfield UK. Machine specifications are shown in 
Figure 3. The output of the experiment is the surface runoff amount. 

The data achieved were primary data from the laboratory, which means, it was directly observed in a 
laboratory using Rainfall Simulator with soil density and slope as variables.  
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Figure 3. Rainfall Simulator S12-MKII Hydrology System, Armfield UK parts used in the machine are: (1) rain 
intensities control, (2) rain intensities control, (3) slope control, (4) runoff control, (5) material tank and  (6) 
infiltration height gauge ( multi-tube manometer). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The nozzle on the top controls rainwater size. 
 

Rainfall Simulator shows the hydrological event in the surface land. This machine has a 2x1.2x0.3 
meter plot tank. While in this experiment it has been modified to 1.17x0.97x0.30 meter as shown on Fig. 4. 
The nozzle on the top controls rainwater size. This tank also has two porous pipes and two gauge flow tank. 
 

Table 1. Experimental design of Relationship between rain, runoff, and infiltration. 

Compaction 
Intial 
water 

content 
Slope Compaction 

Intial 
water 

content 
Slope Compaction 

Intial 
water 

content 
Slope 

d1 

w1 S1 
S2 
S3 

d2 

w1 S1 
S2 
S3 

d3 

w1 S1 
S2 
S3 

w2 S1 
S2 
S3 

w2 S1 
S2 
S3 

w2 S1 
S2 
S3 

w3 S1 
S2 
S3 

w3 S1 
S2 
S3 

w3 S1 
S2 
S3 

w4 S1 
S2 

w4 S1 
S2 

w4 S1 
S2 
S3 

 
 
 
 
 

  Where : 
d1, d2, d3        : soil compaction 
w1,w2,w3,w4   : Initial water content
S1, S2, S3       : land slope 
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3 RESULTS 
 

3.1 Runoff analysis 
Runoff happens when rainfall rate was higher than the infiltration capacity of soil. In this research, surface 

runoff occurred on water saturated and unsaturated soils. 
1 The first kind of flow occurred on the unsaturated soil. In this case, soil can be dry by adding 20% 

water (of soil weight) into Rainfall Simulator. 
2 The second kind of flow occurred when soil had become saturated and there were no empty pores 

left to be infiltrated. This soil layer condition happens because the soil had become saturated prior to 
rainfall, so infiltration stops. Below were the results of runoff observation before and after saturation 
when rain was stopped at every minute:  
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Figure 5. Runoff curve in density 2, 4, 6 spin (d1, d2, d3) and slope 2,3,4%. 

 
Curves on the Fig. 5, show rainfall and runoff in 120 minutes of soil sample with density 2, 4, 6, and 

slope spins of 2%, 3%, 4%. At d (1), the curve shows times when runoff starts, increase, summit, constant 
start, and constant. It also shows that at steeper land, runoff starting time was faster and time to reach 
constant was also faster. 

For runoff starting time, the steeper the land, runoff starting time was faster. In density 4 spin, the steeper 
the land, the faster it was to reach constant. It can be seen in the 4% curve that runoff process was steeper 
than 4% in 2 spins (d1). This showed that alongside slope, density also the affect runoff process rate. Fig. 5 
curves (d3) showed that runoff starting time and constant starting time in density 6 spin slopes was 2%, 3%, 
and 4 %. Curve below shows that the denser the soil, the faster the runoff starting time will be. The curve 
goes up in 6 spin (d3) and was tighter than d2. This showed that rain process and runoff were affected by 
slope and density.  

Curve tightness in the highest density showed that runoff and infiltration will reach rain value depending 
on the soil treatment. The denser the closer. This water content variable was observed for runoff process and 
infiltration. Below are the Figures for this condition, Figure 6: 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 6. Runoff and time at d1, d2, d3_S 2% different water content. 
 

Initial water content at the same slope and density means a faster constant time. This showed that soil in 
same density and slope had pores that were fully filled with water. Runoff was higher at same density and 

Runoff 
(lt/min) 

rainfall rainfall 
rainfall Time (min) Time (min) Time (min) 

Runoff 
(lt/min) 

Runoff 
(lt/min) 

d1 d2 d3 
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slope, but high water content was present as well. This was because the soil was filled with water. So for the 
runoff starting time, the higher water content means faster runoff starting time, as shown in Fig. 6.  
 
3.3 Infiltration analysis 

During rainfall water infiltrates the soil from the surface and redistributes in the unsaturated zone. The 
distribution process depends upon the soil moisture conditions, water pressure, and unsaturated permeability 
(Gavin and Xue, 2008). According to (Arfan and Pratama, 2012), the relationship between infiltration and rain 
intensities variables, density and slope, were directly proportional. Infiltration will increase when rain intensity 
was increased. The relationship between infiltration and the density was inverted. Infiltration will increase if the 
density was decreased. Relationship between infiltration and slope variable was inverted; infiltration will 
decrease if the slope was increased. 

 
  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
Figure 7. Infiltration rate from rain and runoff relationship in the same density and slope variation at (a)-

d1, (b)-d2, and (c)-d3. 
 

Based on Figure 7 a), b), and c), it can be seen that infiltration rate was the same in density d2, and d3 at 
slope of 2%, 3%, 4%, but density d1 had a higher result. Density d1 at slope 2%, 3%, 4% had an 
approximately same result for those of d2 and d3. So it can be concluded that maximum infiltration capacity 
will be the same at a uniformed density but slopes will affect the runoff rate to reach constant infiltration 
capacity.  

From Figure 8 (a, b, c), it can be seen that at same slope, the higher density will cause lesser infiltration. 
Density of soil will decrease the infiltration rate up to 70% to 90% (Gregory, 2006). At a denser soil, the 
infiltration capacity rate had similar value and tighter which shows that infiltration rate was similar in different 
density at uniformed slopes.  
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But in density d1, there were spaces between each density. This means that there were other effects in 
rain process, runoff, and infiltration. The factor is initial water content. Initial water content affects the process 
of filling pores in soil density process. The soil density process was stated as SG (Specific Gravity) and pore 
value was inversed. A higher SG means higher soil density (dry soil volume), whereas a higher pore value (e) 
means lesser soil density. Which means high density will give rise to a decline in rate of infiltration.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. Infiltration rate on rain and runoff relationship in the same slope density variation S2%, S3%, 

S4%_d1, d2, d3. 
 

3.4 Rainfall, runoff and infiltration processes analysis 
Rain and runoff process use the concept of water balance with infiltration as the only loss factor in 

overland flow. Rain, runoff, and infiltration curve show three moments of rain, runoff, and infiltration 
processes. Those were rainfall and infiltration moment, runoff moment when infiltration was lower than rainfall 
until the meeting point of runoff and infiltration curves, the last was when infiltration and runoff have reached 
constant.  

In this curve, runoff starting time and constant infiltration will be shown at the same time. This 
explanation was part of water balance concept. Figure 9 shows result from relationship data of runoff and 
rain. Runoff and infiltration relationship also showed a meeting point at certain times when runoff and 
infiltration were the same amount. Because the rainfall rate was 2 Litre /minute, it showed that runoff and 
infiltration were in balance which was 1 Liter/minute. The steeper the slope, the faster meeting point happens. 
Figure 9 shows water balance time of which meeting point between runoff and infiltration on a denser soil 
means the faster balance between rain, runoff, and infiltration occurred. This time showsed the runoff starting 
point after infiltration process.  This time balance occurs in density with the same initial water content and 
slope .  

Infiltration happens on a denser soil, steeper slope where higher initial water content was faster. 
Infiltration capacity with units of liters / minute was the flow capacity in the soil over time. The maximum 
capacity of the ground to collect rain water that was at constant on the amount of time concentration. So the 
maximum capacity of the ground to collect rain water that comes from a reduction in the discharge of rain had 
reduced runoff (Hjelmfelt, 1978). 

Rain and runoff process used the concept of the balance of water by infiltration as the sole factor in the 
loss of the flow of surface land. Curve of rain, runoff and infiltration showed three times the incidence of the 
rain, runoff and infiltration. The third time was when it began to rain and there was water infiltration, time 
begins to flow, namely when infiltration was smaller than the rain and up at the meeting point of the line 
between the curves of runoff and curves of infiltration. This is the time where infiltration and runoff have 
reached constant conditions. 

2.5 

 

2 

 

1.5 

 
1 

 
0.5 

 
3% d1 

3% d2 

3% d3 

f 
(l
it
e
r/
m
e
n
it
) 

Time (min) 

f(ltr/
min) 

2.5 

 
2.0 

 
1.5 

 
 

1.0 
 
 

0.5 

 
4% d1 

4% d2 

4% d3 

f 
(l

it
er

/m
en

it
) 

Time (min) 

f(ltr
/mi
n) 

f(ltr
/mi
n) 

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

4004 ©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print)



          
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Relationship between rain, runoff, and infiltration for d1_2%_w1,w2,w3,w4. 
 
4 CONCLUSION 

Density variation of d1, d2, d3 will affect infiltration rate. The denser the soil, water in the tank will runoff 
faster and infiltrated lesser. While at a variation of slopes but same density, runoff water will be faster with 
steeper soil. Runoff amount will be uniform at last. Initial water content also affects infiltration and initial water 
content affect pores fill so water infiltrate lesser when initial water content is increased. The same thing applies 
to soil of different kind and different pore value.  

When density is the same and the slope is steeper, infiltration rate at constant will be less. When the slope 
is the same and density is higher, infiltration rate at constant will be less. Based on the relationship of rain and 
runoff in water balance and in wave kinematic law, time of concentration will be read in runoff process. Runoff 
happens when runoff curve goes up until it becomes constant. Infiltration as rain absorption also has the same 
condition. 
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ABSTRACT 

The present study shows that land use change has major impact on runoff of urban catchment. The land use 
from the year 1980 and 2011 have been prepared and used in the SWAT model. It has been found that the 
runoff increases by 14.95% at the major outlet of urban watershed of the Jaipur city. The urbanization has 
shown considerable increase in the urban area from 39.23 km2 to 97.89 km2 i.e. 149.53% over a span of 21 
years. Similarly, other condition were also calculated for land use change as in this present study. Increasing 
urban runoff results in urban flooding, therefore assessment of quantum of increase can help the water 
resources planner of the city to plan adaptation techniques. The present study is an attempt to provide the 
impact of urbanization over the total horizon of around 44 years with digital data presented from 1972, though 
only one such result is indicated. For high accurate elevation value Cartosat-1 Digital Elevation Model (DEM) 
with 30m spatial resolution is used, provided by ISRO Bhuvan Data Portal. Cartosat-1 V3 DEM are highly 
accurate due to fixed elevation on water bodies, which does not impact during simulation. Model is simulated 
with each change in land use and runoff, groundwater is calculated. Simulation was run on number of times with 
the changing of land use considering same rainfall to calculate runoff at the outlet with land use change.  

Keywords: Surface runoff, impact of land use; urban watershed; urban hydrology; discharge and land use. 

1 INTRODUCTION 
 Change in the availability of water in general, and change in surface runoff in particular, of an area can 

affect the land cover land use (LCLU). Change in LCLU is normally induced by human activities rather than 
natural events. Such changes can have great impact on the environment of watersheds as they alter the 
hydrological processes such as infiltration, groundwater recharge, base flow and runoff (Niehoff et al., 2002). 
Study of change in runoff characteristics due to human activities has an important role in understanding the 
effects of LCLU change on hydrological processes over the earth surface (Shi et al., 2007). To understand the 
future effects of land use change on runoff characteristics, it is important to have an understanding of the effects 
that historic changes in land use have had on runoff (Crooks et al., 2000). Hence it is imperative that the effect 
of change in land use on the runoff characteristics of a region to be assessed (Shi et al., 2007). Numerous 
watershed models with varying capabilities, strengths, and weaknesses are available in each of these 
categories (Randall et al., 1998). Among watershed models, the Soil and Water Assessment Tool (SWAT) is a 
versatile watershed model as it has the capability of simulating many processes right from rainfall-runoff process 
up to plant growth (Neitsch et al., 2002; Gassman et al., 2007). The SWAT is a computationally efficient agro-
hydrological watershed scale model and is well-suited for studying the large-scale impacts of land use changes 
(Breuer et al., 2009). Components of the model include weather, hydrology, soil characteristics, plant growth, 
nutrients, pesticides and land management (Gassman et al., 2007). Many attempts have been made for 
modelling runoff in an ungauged watershed with little or no calibration efforts (Arnold et al., 1998). Here, 
ungauged watersheds refer to the watersheds for which topographic and climatic properties are available, but 
discharge data are not available. The SWAT model could simulate runoff from a watershed in Jaipur with 
reasonable accuracy even without any calibration data (Jayasree and Sajikumar, 2012). Wang et al. (2012) 
compared the effect of change in land use by utilizing the SWAT and partial least square method. Githui et al. 
(2009) used SWAT model for assessing the impact of land use change on runoff characteristics and found that 
varying degree of dependence of land use change on the runoff characteristics. Several such studies have been 
conducted by many investigators for assessing the effect of land use change on runoff characteristics (Li et al., 
2009; Wang et al., 2012; Alibuyog et al., 2009). These studies indicate that impact of land use changes on runoff 
characteristics varies from place to place. Therefore it becomes imperative to assess the effect of LCLU change 
on runoff characteristics in the area of interest, especially where unique features exist in such area. Hence the 
objectives of the current study are set as:  
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 To assess the effect of local land use change on the runoff characteristics of some of the typical
watersheds in Jaipur, India where slope of the terrain changes drastically within a relatively smaller
length of the river.

 To appraise how the change in land use in the last few decades affected the runoff characteristics of
these watersheds.

 To assess groundwater recharge in urban watershed.

2 MATERIALS AND METHODS 

2.1 Study area 
 The current study focuses on the effect of land use landcover change on runoff characteristics of 

watersheds Jaipur urban. All three watershed has area within city and some area outer of city. Jaipur is city of 
Rajasthan, a state in India, located in limits of 26°45’8.7’N to 27°1’55.42” and 75°41”40.86” E to 75°51”14.80” 
E as shown in Figure 1. This area receives 548mm total average rainfall in a year. Beyond this region rainfall 
toward west has decreasing trend in all years. Figure 2 shows annual rainfall pattern of rainfall area around 
each grid surrounded by this region. This Grid is generated with India Meteorological Department (IMD) rainfall 
data. Rainfall in an area is always in limits of rainfall of its surrounding area.  This growth also increased the 
amount of runoff from urban catchment. Total area of Jaipur city is after considering 2016 urban expansion is 
316.29 km2. This area has significant changes in land use over 44 years which also impact urban runoff. Change 
in land use also change groundwater recharge which might change the lower groundwater level in long span of 
time and also reduce quality of groundwater. In long time, most of land use changed and most of agriculture 
area is reduced. This type of study for this area has never been carried out. So, an attempt has been made to 
quantify runoff with the changing of land use. 

Figure 1. Study area. 

Figure 2. Weather grid surrounding by Jaipur. 
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2.2 Data sources 
Weather data was used from Indian Metrological Department Processed by SWAT (Soil and Water 

Assessment Tool) and CFSR (Climate Forecast System Reanalysis). It provide 36 year of compiled weather 
data of Temperature, Daily rainfall, Humidity, wind speed and solar radiation. We also used data from IMD for 
simulation of watershed on different conditions with all climate parameter average and this was data updated in 
SWAT database with a certain format required for SWAT before processing. It was later, converted to Grid 
format for processing requirements where more details about processing of this data will be found in research 
paper on climate data  (Dile and Srinivasan 2014; Fuka et al., 2014). Table 1 Shows details of Satellite image 
used. 
 

Table 1. Detail of satellite data used. 
Satellite Sensor Date taken Resolution 

L 1 MSS multi-spectral 04-09-1972 60 meter 

L 3 TM multi-spectral 08-01-1980 60 meter 

L 5 TM 13-09-2000 30 meter 

L 5 ETM+ multi-spectral 22-10-2011 30 meter 

L 8 OLI and TIRS 17-09-2016 30 meter 

 
Digital Elevation Model of Cartosat-1 of Version 3 was used for watershed generation and simulation. Soil 

Map by FAO was used and soil properties provided by FAO were set into database of SWAT Details of Jaipur 
Soil properties as shown in Table 2. The area of each soil has been calculated and values were steeled in 
model. 
 

Table 2. Soil properties of Jaipur urban watersheds. 
Term Loam Soil Sandy Loam 
FAO Soil code Be76-2b-3677 Qc49-la-3840 
Hydrological Soil Group D C 
Area 212.25km2 16.78km2 

Soil K (Layer 1 and 2) 4.63 mm/hr, 4.23 mm/hr 9.1 mm/hr, 9.99 mm/hr 
Clay (Layer 1 and 2) 25%, 28% 14%, 17% 
Silt (Layer 1 and 2) 36%, 36% 32%, 32% 
Sand (Layer 1 and 2) 39%, 35% 54%, 51% 

Calculated and Identified in Model, Data Source FAO 
 
2.3 Methodology  

 Hydrologic modelling and analysis of urban watersheds of Jaipur was carried out using the ArcSWAT 
interface for SWAT in ArcGIS. The surface runoff simulation in SWAT was brought out using various input data 
such as topography, land use, soil properties and weather data in the watersheds. The watersheds were initially 
divided into Hydrologic Response Units (HRUs) on the basis of unique combinations of land use, soil distribution, 
and slope. Total 15 Hydrological Unit was generated for the whole watershed area. Total of 3 outlets are 
identified after generation of drainage network over surface area. Each outlet and watershed has been 
numbered from 1 to 3. Hydrological units provide best estimation for simulation model to simulate soil properties 
and rainfall (Neitsch et al., 2002). Based on daily components of hydrologic cycle (precipitation, runoff, 
evapotranspiration, percolation, sub- surface return flow, groundwater flow, and changes in water storage), a 
daily water budget in each HRU was calculated (Neitsch et al., 2002). 

The hydrologic cycle is simulated by the SWAT model on the basis of the following water balance Eq. [1]. 
 

ܵ ௧ܹ ൌ ܵ ைܹ  ∑ ሺ௧
௧ୀଵ ܴ௧ െ ܳ௧ െ ܧ ௧ܶ െ ௧ܲ െ ܴܳ௧ሻ                   [1] 

 
where, ܵ ைܹ and ܵ ௧ܹ are the soil water content at the beginning and end of a time period for which water 

balance equation is written. The unit used in the equation is mm.ܴ௧,ܳ௧,ܧ ௧ܶ, ௧ܲ and  ܴܳ௧ are the rainfall, the 
surface runoff, the evapotranspiration, the percolation and the lateral flow respectively. 

 Two methods for estimating surface runoff are available in the SWAT: The SCS curve number procedure 
and the Green and Ampt infiltration method. In this study, the SCS method was used. The SCS curve number 
method estimates surface runoff from daily rainfall using initial abstractions (surface storage, interception, and 
infiltration prior to runoff) and a retention parameter which varies with respect to changes in soil, land use 
management, slope and soil water content.  It may be noted that this computation had been carried out at the 
watershed level but not at the HRU level. The sizes of HRUs are much smaller than that of watershed. Though 
the CN method has certain inherent drawbacks, it was  proved to be  useful in  simulating the historical runoffs, 
especially when the watershed was considered to have a large number of sub-basins and the flow are routed 
through channels by hydrologic routing  as in  case of  the SWAT  model (Raneesh and Thampi, 2011; Jayasree 
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and Sajikumar,  2012).The SWAT model is proved to be useful in simulating the daily  surface runoff, sediment 
yield   and nutrient  load,   even though it utilizes the  CN  method for  computing  surface runoff (Raneesh et 
al., 2010). 

 Once the surface runoff is calculated with the curve number method, the amount of surface runoff released 
to the main channel is calculated from each sub-watershed and is then routed through the channel network. 
Three methods of estimating Potential Evapotranspiration (PET) are available in the SWAT. The readers are 
referred to Neitsch et al. (2002) for complete description of the methodology of the SWAT model. 

Groundwater Recharge is calculated with following Eq. [2]. 

,ݓ ൌ ൬1 െ exp െ
ଵ

ఋೢ
൨൰ . ௦ݓ  exp െ

ଵ

ఋೢ
൨ .  ,ିଵ        [2]ݓ

where, ݓ, is amount of recharge entering the aquifer on day i, ߜ௪ is the delay time or drainage time 
of the overlaying geologic formation (days), ݓ௦ is the total amount of water exiting the bottom of the soil profile 
on day i, and ݓ,ିଵ is the amount of recharge entering the aquifer on day i-1. The total amount of water 
exiting the bottom of the soil profile on day I is calculated as per Eq. [3]: 

௦ݓ ൌ ,௬ୀݓ   ,௧      [3]ݓ

where, ݓ௦ is the total amount of water exiting the bottom of the soil profile on day i , where ݓ,௬ୀ is 
the amount of water percolating out of the lowest layer, n, in the soil profile on day i, and ݓ,௧ is the amount 
of water flow past the lower boundary of the soil profile to bypass on day i (mmH2O) 
The delay time ߜ௪ cannot be directly measured. It can be estimated by simulating aquifer recharge using 
different values for ߜ௪ and comparing the simulated variations in water table level with observed values. 
Johnson (1977) developed a simple program to iteratively test statistically evaluate different delay times for the 
watershed. Sangrey et al. (1984) noted that monitoring wells in the same area had similar values forߜ୵, so 
once a delay time value for a geomorphic area was defined; similar delay time can be used in adjoining 
watershed within the same geomorphic province.  

2.4 Model setup 
We have divided total watershed using 3 outlets by manual identification. Landuse pattern in each 

watershed was calculated. But it’s found that only watershed No. 3 had major impact of land use change due to 
its covering of maximum area of city. So we focused on this watershed, weather details of all watershed are 
also calculated. Watershed map and detail of land use changing over time in each watershed is shown in Figure 
3 and Table 3, 4 and 5 in result section of this paper. We have given 15% (Landuse), 10 %( soil). 20 %( slope) 
weight to HRU classes as recommended by SWAT.  

 The simulation period can be set according to the requirement, but here it was fixed based on the availability 
of data for validating the model. Hence, the period of simulation was fixed to 2016 with different land use i.e. 
1972, 1980, 2000, 2011 and 2016. It may be noted that ungauged watershed scenario was simulated and was 
assumed that no runoff data is available for calibration of the model. The parameters used in the model were 
not derived from an actual runoff data rather derived by simulation as actual condition.  

3 RESULTS AND DISCUSSIONS 

3.1 Simulation of runoff and its dependence on land use 
As the aim of the current study is to assess the effect of land use and land cover on the runoff 

characteristics, the SWAT model was run to simulate the surface runoff in selected watersheds. The study was 
expected to be conducted in a data scarce situation as the lack of sufficient number of gauging stations was a 
common hurdle in many water resources applications, at least in the region under consideration. Hence, the 
selected SWAT model was run with the minimum data possible. The land use data was prepared using Landsat. 

These processed data along with other local data such as soil and weather data were used for running the 
model. It is seen that the simulated flow varies appreciably from the measured one.  This can also be seen from 
the Table 3 which shows the annual average values of various components in the runoff processes. This values 
are based on actual data, and repressing that changing in land use also impact on groundwater recharge and 
other hydrological parameters. To identify impact of land use we have used same weather data as of 2011 for 
year 1980 with changing land use. So, that only impact of land use change can be identified. It is found that 
groundwater recharge is reduced in 2011 due to change in land use.  
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Table 3. Groundwater recharge and annual basin values by considering same rainfall. 

 
It is found that groundwater recharge was 285 mm in year 1980 which later was reduced to 166.85 mm. 

The lower the groundwater recharge, the lower the groundwater level. Similarly, as in Table 3, recharge of 
shallow aquifer is also reduced. But water yield is increased. Surface runoff also increased from 540m to 
672mm. Due to loss in vegetation evapotranspiration was also reduced.  Urban area has increased in speedy 
way and Table 4 is showing the area changes from 1972-2016 in km2. Table 4 is also showing the changing 
pattern of land use in percentage. It is clear that urban area has increased by 179 km2 from 1972 to 2015. 
Figure 3 shows changing pattern on land use of urban area of Jaipur city. Built up area of Jaipur have 
undergone a very fast rate of growth and it is growing at the rate of 4.06 km2/year (Average calculate by 
comparing 1972 and 2016 data). Whereas agriculture land loss is about 126.23km2 and this loss has an average 
rate of 2.86 km2/year. Vegetation loss was about 53.64 km2. Most of agriculture land were converted into built 
up area. Natural vegetation appears to be more in year 1980 and 2001 but in 2011 it also recorded a decrease 
in the area. Most of population is found in north side of Jaipur where build up is too dense. West side has the 
most agriculture and natural vegetation. Growth of Jaipur city starts form Jaipur Lake and move towards west 
side of city. This city is more extended towards the North and south side and less extended in the east and west 
side. Due to being a tourist place it is increasing at rapid speed. Table 4 shows the changes in land use and 
Table 5 shows the change in detection matrix for each class from 1972 to 2016 
 

 
Figure 3. Landuse of Jaipur from 1972 to 2016. 

 
 

Term 1980 Landuse  2011 Landuse 
Precipitation  1360.8 mm 1360.8 mm 
Surface runoff Q 540.30 mm 672.09 mm 
Lateral soil Q 11.70 mm 11.34 mm 
Groundwater (SHAL AQ) Q 227.09 mm 115.97 mm 
Groundwater (DEEP AQ) Q  8.92 mm 5.16 mm 
Revap* (SHAL AQ => SOIL/PLANTS) 44.03 mm 44.03 mm 
Deep aquifer recharge  14.27 mm 8.34 mm 
Total aquifer recharge 285.35 mm 166.85 mm 
Total water yield 788.00 mm 804.56 mm 
Percolation out of soil 290.12 mm 169.82 mm 
Evapotranspiration  472.1 mm 449.8 mm 
Total sediment loading 143.09 T/HA 131.69 T/HA 
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Table 4 Area in km2 and percentage in Brackets. 
Name 2016 2011 2001 1980 1972 

Built Up 
191.67 
(60.50) 

167.41 
(52.84) 

108.86 
(34.36) 

56.86 
(17.95) 

12.26 
(3.87) 

Agriculture 
50.45 

(15.92) 
67.79 

(21.40) 
68.86 

(21.74) 
106.39 
(33.58) 

176.68 
(55.77) 

Vegetation 
44.31 

(13.98) 
55.49 

(17.51) 
126.23 
(39.84) 

137.47 
(43.39) 

97.95 
(30.92) 

Pasture Land 
29.18 
(9.21) 

24.89 
(7.86) 

11.42 
(3.61) 

16.10 
(5.08) 

29.44 
(9.29) 

Water Body 
1.22 

(0.39) 
1.25 

(0.39) 
1.45 

(0.46) 
0.00 

(0.00) 
0.50 

(0.16) 
 

Table 5. Change detection matrix of Jaipur 1972 vs 2016 (area in km2).  
Built up Agriculture Vegetation Fallow Land Water Body Total 2016 

Built up 10.34 107.09 52.93 21.18 0.13 191.68 
Agriculture 0.56 29.03 18.24 2.32 0.09 50.23 
Vegetation 1.10 24.45 13.63 4.60 0.26 44.05 
Pasture  0.23 15.27 12.39 1.20 0.02 29.11 
Water Body 0.01 0.56 0.54 0.11 0.00 1.22 
Total 1972 12.24 176.40 97.74 29.42 0.50 

 

 
Table 6. Detail of urban watershed based on outlets. 

 
 
 
 
 
 

 
The change detection matrix is showing how each class obtained values from other class during changing 

land use of 44 years. As built-up in 2016 takes up to 107.09 km2 from 1972.  Elevation map of Jaipur shows 
higher elevation at north side of Jaipur and lower are at south side of Jaipur as shown in Figure 4. Much variation 
was found in elevation means and more in water flow. This type of area required a great deal of water 
management practices. On other side rainfall of Jaipur which is derived from IMD data and interpolated variation 
according to city level is showing a micro pattern of rainfall found in the city and it was derived from 35 years of 
climate average data. It receives more rainfall at east side and less rainfall at west side. This was the reason 
that deserts were found in west side of continent. Since it is a very small variation it does not impact much. But 
this variation is important to contribute to runoff. Area of soil under each watershed is shown in Table 8. The 
major types of soils were loam and sandy loam. Major area of watershed was found under loam soil and very 
less area is under sandy loam soil.  Properties of all soil had already been discussed in Table 2 and soil map is 
shown in Figure 7. Loam soil has a coverage of 212 km2 and sandy loam soil is 17 km2.  

 

 
Figure 4. Elevation map of Jaipur. 

 

Outlet Number Area km2 

Outlet 1 26.02 

Outlet 2 51.18 

Outlet 3 151.82 

Total Area of Watersheds 229.02 
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Figure 5. Micro level rainfall variation. 

 

 
Figure 6. Land use in each watershed. 

 

 
Figure 7. Soil map of Jaipur. 
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Figure 8. Urban watershed and outlet of Jaipur. 

Figure 9. Discharge vs landuse. 

It is found that urban area has reached its maximum possible extent of watershed boundary. It is not 
possible to increase more urban area in that watershed as shown in Figure 6 In the center of map, a whole 
watershed is covered by urban development.  

3.2 Runoff land use 
Simulation was run for all three watersheds for a whole year. But only the major watershed is important 

and so only it is considered and monsoon period data is calculated. Change in land use impact on discharge 
and total amount of water also were calculated. We have found that urban area is expanding and amount of 
runoff from city is increasing.  Both are increasing at linear rate combination as in reported results. But it has 
limits, because if urban area reached maximum extent of watershed then more increase in runoff is not possible. 
This is because no further expansion of urban is possible in a watershed. But this results and derived relation 
is applicable on area of similar properties. After simulation, we get results of runoff versus land use as shown 
in Figure 9. It is clear from figure that runoff is increasing with expending urban area. As of in August discharge 
was 0.25m3/sec in 1972 and it had increased up to 0.80m3/sec in 2016. Same trend was visible in all years 
during monsoon. Jaipur is centered at the location on earth where desert is near and it receives very less 
monsoon rainfall. Table 8 shows how runoff is changing with respect to land use. We have calculated it in both 
way by considering 1972 as base year and compare changes with previous years. From Table 9 it is clear that 
urban area has increased up to 1306% compared to 1972 with 2016. Similarly, runoff had increased by 918% 
compared to 1972 with 2016. But when compared to 2011 urban area in major watershed had increased by 
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6.02% and runoff compared to 2011 vs 2016 is just 0.63%.  This is because no further expansion is possible in 
urban area of major watershed. But overall till it reach boundary of watershed it is following a positive and linear 
relationship between runoff and land use as shown in Figure 10 and Table 7. It is clear from the figure where it 
has an r2 value of 0.99 which is nearly about exact positive approach. Trend line and actual data were following 
the same slope. So by using this linear Equation of runoff and land use we can predict land use change and 
runoff relation of similar area with same properties. Table 9 also shows changing volume of runoff with changing 
of urban area. 
 

 
Figure 10. Runoff volume vs urban area. 

 
Table 7. Landuse pattern on whole watershed (area in km2). 

Whole Watershed 2016 2011 2001 1980 1972 
Built up 145.27 132.41 88.53 46.49 7.59 
Agriculture 23.81 30.88 37.07 70.31 125.43 
Vegetation 44.95 49.95 95.19 98.30 71.71 
Pasture  14.81 15.55 6.49 13.92 24.12 
Water Body 0.19 0.23 1.75 0.00 0.18 

 
Table 8. Runoff changes due to changes in land use of urban watershed (in Percentage).  

Urban Expansion in Major Watershed  Change in Runoff Volume (MCM) 
Year Change vs Previous Period Change vs 1972 Change vs Previous Period Change vs 1972 
2016 6.02 1306.23 0.63 918.25 
2011 38.87 1226.42 52.88 911.9 
2001 79.68 855.15 95.77 561.9 
1980 431.57 431.57 238.1 238.1 
1972 Base Year 

   

 
Table 9. Urban area vs runoff volume with land use change (Major Watershed). 

 
4 CONCLUSIONS 

It is apparent from the results that land use change has an impact on the runoff and groundwater. Runoff 
was only 0.126 MCM in 1972 and increased to 1.283 MCM in 2016. During the same period urban area also 
increased from 7.59 km2 to 145.27 km2 in the watershed. Urban expansion has also an additional impact 
because it reduced aquifer recharge from 285.35 mm to 166.85 mm. Changes in the extent of urban area also 
impacts on natural process of hydrological cycle. Later this changes impact the human in form of flash flood and 
overloaded water in urban catchment. Urban areas build on natural flow path of water and this causes flood due 
to flood water following its old flowing pattern. Our study shows the drainages also have increased speed of 
water flow with changing pattern on urban area. This water must be managed to avoid damage to properties. 

Year Urban Runoff MCM 

2016 103.78 1.283 

2011 97.89 1.275 

2001 70.49 0.834 

1980 39.23 0.426 

1972 7.38 0.126 
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So, before expansion of urban area it is better to quantify the impact of land use with hydrology method to build 
a better urban city.  
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ABSTRACT  
 
Today, it is essential to use a hydrological model to assess and predict the water availability of river basins 
due to climate change. Event based rainfall-runoff modeling is carried out using HEC-HMS. In the present 
study, Linear imaging self-scanning sensor (LISS-III) satellite images are used to delineate the river basin by 
using ARCGIS. Penman-Montieth model is used for the estimation of evapotranspiration loss. Green- Ampt 
model and Snyder's method are compared and best suitable method is adopted to transform rainfall into 
runoff. Uncertainty analysis is carried out to increase the model efficiency. The condition number is being used 
for the sensitivity analysis to ascertain the most sensitive parameters. Only sensitive parameters are used for 
the uncertainty analysis. The Model is separately run, calibrated, and validated for the years 2011-2015 
events. Green – Ampt and Snyder models are compared for the predictive capability and it has been 
concluded that Green –Ampt model is better suitable for the study area. The objective of the present study is 
to develop rainfall runoff model for the Lower Tapi Basin and carried out the uncertainty analysis to estimate 
the better model parameters for the simulation of rainfall events. For the uncertainty analysis, Monte-Carlo 
method is used by taking Nash –Sutcliffe coefficient as an objective function, which is to be maximized for the 
better simulation of rainfall runoff process. 

Keywords: HEC-HMS; monte-carlo method; sensitivity analysis; rainfall runoff modeling. 
 
 
1 INTRODUCTION 
 Rainfall-runoff is a complex phenomenon to represent in mathematical form. In the real world system, 
rainfall runoff process is influenced by each and every physical characteristics of the catchment. To generalize 
all physical characteristics of the catchment is really a difficult task. Consider the infiltration phenomenon 
which has a direct influence on the runoff process, when infiltration is observed at different sites in the 
catchment it comes out to be a wide range of infiltration rates. In a case of lumped hydrological model, 
representation of such wide range of the values are difficult because parameter values are to be averaged for 
the particular catchment. Climatological parameters are also having great influence on the runoff process. 
Consider the evapotranspiration process it is influenced by the temperature, wind speed, vapor pressure and 
other parameters. Getting proper data for all these parameters is itself is the difficult task. Even if omitted the 
single parameters can lead to the imprecise estimation of any process.  
 Today's advanced computing techniques have overcome the most of the real world complexity. It is 
possible to represent even a complex phenomenon in a fairly good way. Using the gridded distributed models 
it is possible to represent the catchment in a more realistic way. Watershed management is really an 
important subject which will helpful in the future planning of Hydro projects and natural resources 
management. The HEC - HMS tool is used to predict the runoff process in a Lower Tapi basin at all below 
mention gauging stations.  
 Hydrological model of HEC-HMS is designed based on simulation of rainfall-runoff in watersheds that can 
solve rainfall-runoff process in the graphical interface (Elham et al., 2012). Hydrographs produced by program 
use directly or in conjunction with other software for studies of urban drainage, water availability, future 
urbanization impact, flow forecasting, flood damage reduction, floodplain regulation and systems operation. 
Most of the calculations in HEC-HMS include loss calculations, conversion of extreme precipitation to run off, 
baseflow estimation, routing in reaches and reservoirs. Radmanesh et al. (2006) calibrated and validated the 
HEC-HMS model in Yellow River watershed in southwestern Iran. Rostami et al. (2012) used the HEC-HMS 
and GIS to simulate the rainfall-runoff process in Amirkabir watershed. Sabzevari et al. (2009) estimated the 
flood hydrograph in no statistical watersheds using HEC-HMS model and GIS in Kasi-lian watershed. 
Shaghaeghi fallah (2001) applied HEC-HMS model to simulate river flow in Mohammadabad watershed 
(located in the north of Iran). There are different methods for surface runoff simulation in HEC-HMS and these 
methods have different results (Elham et al., 2012). Yusop (2007) used the HEC-HMS for predicting the runoff 
in oil Palm catchment. 
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 Yener et al. (2007) simulated the rainfall runoff process by dividing the basin into three sub-basins: 
Kirazdere, Kazandere, and Serindere and each sub-basin is modeled with its own parameters. For the 
hydrologic modelling studies, the new version of HEC-HMS hydrologic modelling software released in April 
2006 by the US Army Corps of Engineers is used. Modeling consists of two things, event-based hourly 
simulations and runoff scenarios using intensity-duration-frequency curves. Infiltration loss and baseflow 
parameters of each sub-basin are calibrated with hourly simulations. This study concludes that the simulated 
runoff values can be used for flood control and flood damage estimations.   
 Arekhi et al. (2011) compared the different methods of precipitation loss which are Constant loss, Initial 
and constant loss rate, Deficit and Green & Ampt. The objective of this study was to fit the peak flow 
discharges and the total volume of flow in HEC-HMS. Results showed that for two objective functions, Initial 
and constant loss rate method shown the best results had fewer changes percent of simulated to observed 
discharges in 70% events and Green & Ampt and Initial Deficit and Constant loss rate methods placed in next 
preferences.  
 Majidi and Shahedi (2012) used the HEC-HMS hydrological model version 3.4 to simulate the rainfall-
runoff process in Abnama watershed located in the south of Iran. To compute infiltration, rainfall excess and 
flow routing, Green-Ampt, SCS Unit hydrograph and Muskingum routing were chosen, respectively. Rainfall-
runoff simulation were conducted using five rainstorm events. Initial results showed that there is a clear 
difference between observed and simulated peak flows. Therefore model calibration with optimization method 
and sensitivity analysis has been done. The results showed that lag time is a sensitive parameter. Model 
validation using optimized lag time parameter showed the reasonable difference in peak flow. Finally, it's been 
concluded that model can be used with the reasonable approximation in hydrologic simulation in Abnama 
watershed.  
 There are many methods available to carry out uncertainty analysis viz, Monte-Carlo method, 
(Shamsudin et al., 2011; Kuczera and Parent, 1998) Generalizes Likelihood Uncertainty Estimation, (GLUE) 
(Beven and Binly, 1992) Model error analysis methods (Montanari and Brath, 2004) and methods based on 
fuzzy set theory (Maskey et al., 2004). Amongst these methods, some of are the sampling based method 
(Monte-Carlo method) to be used when the quantity and quality of data are not satisfactorily available and 
some of are categorized under Bayesian methods (Shrestha et al., 2009) to be used when the quantity and 
quality of the data are satisfactorily available. Pappenberger et al. (2006) has given decision tree to choose 
the method applied to the given problem. 
 In the present study, HEC-HMS (Hydrologic Engineering Center's Hydrologic Modeling System) model is 
used to simulate the rainfall-runoff process. Linear imaging self-scanning sensor (LISS-III) satellite images are 
used to delineate the Tapi river basin in ARCGIS. Penman-Montieth model is used for the estimation of 
evapotranspiration loss. Green & Ampt model and Snyder's method are compared and best suitable method 
is adopted to transform rainfall into runoff. Uncertainty analysis is carried out by using Monte-Carlo method in 
order to increase the model efficiency. The condition number is being used for the sensitivity analysis to 
ascertain the most sensitive parameters. Only sensitive parameters are used for the uncertainty analysis.  
Uncertainty analysis involves in optimizing the parameters involved in the model. Optimized parameters are 
may not be a global optimum parameter of the basin, optimized parameters only suitable to the catchment for 
which uncertainty analysis is being carried out. Many researchers have tried to optimize the model parameters 
by using Monte-Carlo methods using readily available tools (Shamsudin, 2014), but still, proper explanation 
and proper algorithm to carry out uncertainty analysis are still missing. Thus, this study also demonstrates the 
proper algorithm to carry out uncertainty analysis of the rainfall-runoff model.  
 
2 STUDY AREA AND DATA COLLETCTION 
 Tapi River is a river in Central India. Tapti, Tapee, Taapi are the various names used to denote Tapi 
River. Also known as the daughter of Sun God, its basin extends over an area of 65, 145 km2 - a whooping 
area which totals to 2% of the total area of India. In India, Tapt River originates at Multani of Betul District 
(Madhya Pradesh). The Basin of Tapi River lays in three Indian States, namely, Gujarat, Madhya Pradesh and 
Maharashtra. Covering an area about 3,837 km2,   9,804 km2 and 51,504 km2 respectively. For the present 
study, only part of the Tapi basin is being considered, along with the river called Girna, which joins Tapi river 
at Nanded in Maharasht a state. Girna is the second biggest tributary of Tapi in terms of the catchment area. 
Basin map is shown in figure 1. 
 Daily rainfall data and discharge data of the catchment area under consideration is procured from the 
Gujarat State Data Centre (GSDC) for the period of 2011 to 2015. For the present study, 12 rain gauges are 
used after applying missing data analysis wherever it was required. Discharge is measured at the causeway 
downstream of Tapi River.  
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Figure 1. Study area of Lower Tapi Basin 

 
3 METHODOLOGY 
 
3.1 Green-Ampt Model 
 The Green-Ampt model is a conceptual model to calculate rainfall loss in permeable surfaces in a 
specific period, Majidi (2012), Saleh (2012). Initial content (it is a volumetric moisture content at the time of 
simulation), saturated content (it is the maximum moisture content that soil can hold), suction head (mm), 
hydraulic conductivity (mm/hr) and imperviousness (%) are the parameters of the Green-Ampt model. All 
these parameters depend on the type of soil present in the catchment. For known soil type suction head, 
conductivity can be taken from the Green-Ampt parameter table given by Chow (1988). Saturated content can 
be known based on the type of the soil. Initial content can be set based on the type of soil and time gap from 
the previous rainfall event. Percentage of impervious surface for each sub-basin determined using topography 
maps in ArcGIS by supervised classification. 
 
3.2 Snyder method 
 The Snyder’s method is a synthetic unit hydrograph. Snyder considered the shape and area of the basin. 
After analyzing a large number of hydrographs from drainage basins of areas from 25 to 25000 km2 it gave the 
following empirical equations. The hydrograph characteristics are the peak direct runoff rate (qp), the basin lag 
time (tl) and the effective rainfall duration (tr), From these characteristics, five characteristics of a required unit 
 Hydrograph for a given effective rainfall duration may be calculated the peak discharge per unit of 
watershed area (qp’), the base time(tb), the basin lagn (tl), and the widths, W (in time units) of the unit 
hydrograph at 50 and 75% of the peak discharge. 
Lag time or basin lag: The lag time was defined as the time from the center of mass of effective rainfall to the 
peak rate of flow. The basin lag is given by: 
 

ݐ ൌ  ሻ.ଷܮܮ௧ሺܥ

 
where tl = the basin lag (hours), Ct = a coefficient which depends upon the characteristics of the basin, L = 
length of the main stream of the catchment (km), Lc = distance from the basin outlet to a point on the stream 
which is nearest to the centroid of the area of the basin (km). 
Rainfall Duration: The duration of rainfall excess for Snyder’s synthetic unit- hydrograph development is a 
function of lag time. The unit duration of the storm was given as follows (Arora, 2004): 
 

ݐ ൌ
௧
ହ.ହ

 

 
where, tr = the unit duration of the storm (hours), tl= the basin lag (hours). 
Peak discharge: Peak discharge is the highest volume of runoff over the basin. It is a function of the 
hydrographic time relation parameters. The determination and knowledge of peak discharge are very essential 
in hydraulic designs and flood characteristics in basins (Ifabiyi, 2004): 
 

ܳ ൌ
ܣܥ2.78

ݐ
 

 

[2] 

[3] 

 [1] 
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The peak discharge per unit area is given by the equation below (Arora, 2004): 
 

ᇱݍ ൌ
ܳ
ܣ
ൌ
ܥ2.78
ݐ

 

 
where: Qp =the peak discharge (m3/s), Cp = the coefficient which depends upon the retention And storage 
characteristics of the basin (Values of Cp vary from 0.3 to 0.93). A = area of the Basin (km2); tl = the basin lag 
(hours). 
Time base or base period: The time base of a hydrograph is the time from which the Concentration curve 
(rising portion of a hydrograph) begins until the direct runoff component reaches zero. The base period (T) of 
the unit hydrograph is given by: 
 

ܶ ൌ 3 
ଷ௧
ଶସ

 

 
where: T = the base period (days), tl= the basin lag (hours). 
Hydrograph time widths of 50 and 75% of peak flow: As a general rule of thumb, the time Width at W50 and 
W75 ordinates should be proportioned to each side of the peak in a ratio of 1:2with the short time side on the 
left of the synthetic unit- hydrograph. U.S. Army Corps of Engineers gave the following expressions for W50 
and W75 (Arora, 2004): 
 

ܹ50 ൌ
5.9

ᇱଵ.଼ݍ
 

 

ܹ75 ൌ
3.4

ᇱଵ.଼ݍ
 

 
4 MONTE CARLO UNCERTAINTY METHOD 

Monte Carlo method in context to the uncertainty analysis of rainfall-runoff model involves generating 
uniform random parameter(s) values from the known upper and lower limit of the parameter. After generating 
the uniform random numbers of the parameters, a possible combination of all parameters is formed. Each 
parameter set is fed into the rainfall-runoff model and model efficiency is calculated. Model efficiency can be 
calculated by using the index of agreement, Nash & Sutcliffe formula, The explanation for  model efficiencies 
and comparison were reported (Krause 2005). Model efficiency, in this case, is known as the objective 
function which maximize in case of Nash-Sutcliffe. 
 
5  RAINFALL-RUNOFF MODELLING  

Main objective of this study is to simulate event based rainfall runoff process. For the present study five 
events are considered between 2011-2014. Model is calibrated for the first three events independently and 
validated for rest of the two events. Parameters thus obtained are subjected to uncertainty analysis using 
monte-carlo method.  Parameter values for different soil can be found in (Chow et. al, 1964; 1988), Model 
parameters are given in table 1. 

In the rainfall runoff modeling Thiessen polygon method is applied for the different rain gauges to get 
proper rainfall influence area using ARCGIS. Lag-time for the respective polygons is computed from the 
discharge gauging stations.  

Runoff from the all the Thiessen polygons will be accumulated or measured at the Causeway which is 
the last discharge gauging station to the lower Tapi River. There is a release form the Ukai dam, which is at 
the upstream of the catchment, release data are added to the total runoff data accumulated from the 
catchment.  
 

Table 1. Model parameters (Chow et al., 1964; 1988). 
 
 
 
 

 
 
 
 
 
 

Soil Type Parameter (units) Ranges 

Black Cotton 

Initial content (Wi) 
(volume ratio) 

0.10-0.25 

Saturated content (Sr)  
(volume ratio) 

0.3-0.5 

Suction head (ψ) (mm) 110-270 
Conductivity (k) (mm/hr) 0.1-11 
Impervious (i) (%) 5-20 
Lag Time (Lg)  Hours 4-10 

 [4] 

 [6] 

[5] 

 [7] 
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Figure 2. Lower Tapi river showing Thiessen Polygons and the location of different rain gauges and discharge 

stations. 
 
6 RESULTS AND DISCUSSIONS 
 
6.1 Rainfall Runoff Modeling 
 In the present study, the Model is separately run by Green Ampt method and Snyder's method. The 
results are shown in the following table 2. Form the below figure it can be seen that Green-Ampt model 
performed better than the Snyder method. Hence for the present study Green Ampt model is adopted for the 
estimation of runoff. Table 2 shows the global summary of both the models. Figure 3 and 4 shows the runoff 
event (1 Aug 2013 to 5 Aug2013) during model development for the parameter given in Table 3.  
 

Table 2. Model efficiency parameters. 
Sr No Parameters Green Ampt Model  Snyder's Model 

1 Peak Discharge  4699.1 M3/S 4699.1 M3/S 

2 Nash –Sutcliffe 0.811   0.351 

3 Mean Abs Error 413.7 M3/S 632.4 M3/S 

4 RMS Error 478.3 M3/S 885.5 M3/S 

 
Table 3. Initial model parameters. 

Sr No Parameters name and unit Green Ampt Model 

1 
Initial content (Wi) 

(volume ratio) 
 0.2 

2 
Saturated content (Sr) 

(volume ratio) 
0.35 

3 Suction head (ψ) (mm) 250 

4 Conductivity (k) (mm/hr) 0.4 
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Figure 3. Observed and predicted discharge by Green Ampt Model. 

 

 
Figure 4. Observed and predicted discharge by Snyder's Model 

 
6.1 Uncertainty analysis  
 
6.1.1 Sampling 
 Parameters after are distributed uniformly within the given range as shown in Table 1. The reason behind 
for considering the uniform distribution is that presently what value of parameters is best suitable for the area 
under consideration is not known. Once the samples are uniformly distributed, the combination of parameters 
is to be formed with each other. A number of combinations of parameters may go to 15000 or so. Out of all set 
of combination of parameters, only those set of parameters are retained which gives the better model 
efficiency. Those retained parameters are known as behavioural parameters and those which are discarded 
are known as the non-behavioural parameters.  
 
6.1.2 Uncertainty analysis results 
 As per Monte Carlo Algorithm once the parameter combinations are formed next step is to simulate the 
rainfall-runoff model for every parameter combination. Total 1500 model simulations and uncertainty analysis 
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was carried out by developing MatLab code. Out of all simulation representative, 6 model combinations are as 
shown below in Figure 5. 
 

 
Figure 5. Model simulation results. 

 Figure 5 shows the Nash–Sutcliffe coefficient for the different parameter combinations. From the above 
figure it can be seen that there are two sets of the parameter (Model 3 and 6) which gives the very good 
model efficiency. These model parameters are retained for the model validation. Table 4 shows the optimal 
parameter range. 

 
Table 4. Optimum Green Ampt parameter range for Lower Tapi River. 

Wi 0.1-0.3 

Sr 0.3-0.5 

ψ 200-250 

k 0.4-0.6 

 
6.2 Model validation  
 Parameters were optimised for the year 2013 on Lower Tapi Basin catchment but it has to be validated 
for independent data set. It can be seen that model predicts good when the discharge is low, but at the peak 
discharge model is under-predicting. It may be due to an error in observed data or large change in a 
geographical feature of the catchment. Its interesting note that only at the two events of rainfall model is 
under-predicting and at the rest of the event model is predicting satisfactorily hence above justification seems 
to be true. Validation results are shown in Table 5. Scatter plot between observed and predicted discharge is 
also shown in Figure 7. Runoff Hydrograph for the year 2013 is as shown in Figure 5 
 

Table 5. Validation Results for the event 1stAug 2013 to 2ndAug 2013. 

Parameter Parameter Value Nash efficiency 

Wi 0.2 

0.94 
Sr 0.3 

ψ 200 

`k 0.4 

 
 

0.78

0.8

0.82

0.84

0.86

0.88

0.9
Wi 0.1

Sr 0.3
ψ 200

k 0.4

lg 3

Wi 0.2

Sr 0.3

ψ 200

k 0.4

lg 3

Wi 0.1

Sr 0.4

ψ 200
k 0.4

lg 3
Wi 0.2

Sr 0.4
ψ 200

k 0.4

lg 3

Wi 0.3

Sr 0.4

ψ 200

k 0.4

lg 3

Wi 0.2

Sr 0.5

ψ 200
k 0.4

lg 3

Model efficiency for different parameter Combination  

Nash-Sutcliffe model efficiency

Model 1

Model 2

Model 3
Model 4

Model 5

Model 6
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Figure 6. Runoff Hydrograph for the event 1stAug 2013 to 2ndAug2013. 

 
7 CONCLUSIONS 
 Event Based Rainfall Runoff model is being carried out to estimate surface runoff. In the present study 
widely used Snyder model and Green-Ampt models are compared for the suitability of the model for the 
present study area. Amongst both the model Green-Ampt model is found to be more suitable. Green Ampt 
parameters such as  initial water content, saturated water content, suction head, conductivity, and lagtime are 
considered for the uncertainty analysis. It has been observed that HEC-HMS is very less sensitive towards the 
percentage imperviousness and most sensitive toward the suction head (ψ) and lag time (lg). Total 1500 
simulations are performed and best suitable parameters are obtained for the Lower Tapi Basin. Model no. 3 
and 6 with the initial water content 0.2, saturated water content 0.3, suction head 200 mm, conductivity 
0.4mm/here are most suitable parameters for the Lower Tapi Basin. Model calibrated and validated by taking 
the independent data set and found  Nash efficiency greater than 0.85. Hence HEC-HMS model can be used 
for the rainfall-runoff model after performing uncertainty analysis. 
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ABSTRACT  
  
The hydrological modelling can be done in a better way through semi-distributed approach. The objective of 
this study is to simulate streamflow for lower Mahi basin, Gujarat, India using a semi distributed SWAT model. 
Geospatial techniques are essential tools in hydrological modelling. Geographic Information System (GIS) and 
Remote Sensing (RS) are used for the preparation of spatially varied input thematic layer (e.g.: land use map, 
soil map, slope map etc.). The developed streamflow model was calibrated and validated using semi -
automated SUFI 2 calibration technique in SWAT-CUP program. Coefficient of determination (R2) and Nash 
Sutcliffe efficiency (NSE) were used as model performance indicators for the calibration and validation of the 
developed streamflow model. The results of the model performance indicators show good performance of the 
developed model. It can be concluded that SWAT model performs well for the simulation of streamflow.  

 
Keywords: Streamflow; semi distributed model; ArcSWAT; GIS; uncertainty. 

 
 

1 INTRODUCTION   
 Hydrologic models are simplified representations of a hydrologic cycle used for the prediction and 
understanding of hydrologic processes. The basic concept of the hydrological cycle is the movement of water 
through it and in which a major measurable portion is streamflow. The proper management of watershed is 
only possible through the evaluation of streamflow and other hydrologic processes. Hydrologic models are 
broadly classified into three categories viz. empirical models, conceptual models, and process-based models. 
In recent decades, several hydrologic models have been developed for simulating streamflow and 
understanding the spatial and temporal complexities of the watershed catchment response. These models 
vary considerably in their objectives, time and spatial scales involved. Some of the models are Soil Water 
Assessment Tool (SWAT), Annualized Agricultural Non-Point Source model (AGNPS), Areal Non-point 
Source Watershed Environment Response Simulation (ANSWERS), Hydrological Simulation Program–
Fortran Model (HSPF), ArcView-based Generalized Watershed Loading Function model (GWLF), Water 
Erosion Prediction Project (WEPP), etc. Among these models, the freely available geographic information 
system (GIS)-based ArcSWAT watershed model is well supported by the model developers, and is recognized 
by many regulating authorities such as the EPA (US Environmental Protection Agency). The application of the 
SWAT model has increased significantly across the world in the last 5 years but limited studies on the 
application of SWAT have been reported from India (Gassman et al., 2007). 
 Generation of input data in conventional models are proven to be too costly, time consuming and having 
limitations on its data generation. Hydrologic models have increasingly been attributed to the fast growth of 
both geographic Information Systems (GISs) and computer technology. With the advent of remote sensing 
technology, deriving the spatial information on input parameters has become more handy and cost-effective. 
Multi-temporal satellite images provide valuable information related to seasonal land use dynamics, erosional 
features, rainfall interception by vegetation, and vegetation cover factor. GIS technologies are valuable tools in 
developing environmental models through their advance features of data storage, management, analysis, and 
display. The Remote Sensing (RS) technology has been used to provide the land use/cover information by 
using digital image processing techniques. Accuracy and reliability of input data generated by using geospatial 
technologies have been increased to great extend with extended computational capabilities. 
In the present study, a SWAT model was developed for the study area as lower Mahi basin, Gujarat, India, 
which spreads over an area of 2901.187 km2, to simulate the stream flow in Mahi River. Generally, SWAT 
needs a GIS interface to work and they are jointly known as ArcSWAT. In this study, latest version of SWAT 
2012 was interfaced with ArcMap 10.1. 
 
2 OVERVIEW OF SWAT MODEL 

Soil and Water Assessment Tool commonly known as SWAT, developed by the United States 
Department of Agriculture’s Agricultural Research Station.  SWAT is a semi-distributed, time continuous 
watershed simulator operating on a daily time step (Arnold et al., 1998). It is developed for assessing the 
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impact of management and climate on water supplies, sediment, and agricultural chemical yields in 
watersheds and larger river basins. The model is physically based, and allows simulation of a high level of 
spatial detail by dividing the watershed into a large number of sub-watersheds (Abbaspour et al., 2007). In 
SWAT, a watershed is divided into multiple sub watersheds, which are then further subdivided into hydrologic 
response units (HRUs) that consist of homogeneous land use, management, topographical, and soil 
characteristics (Arnold et al., 2012). The HRUs are represented as percentage of area covered by the sub 
watershed and may not be continuous or spatially identified within a SWAT simulation. The driving force 
behind all the processes in SWAT is water balance and it is represented in equation form as (Neitsch et al., 
2009): 
 

SW୲ ൌ SW୭  ∑ ሺ୲
୧ୀଵ Rୢୟ୷ െ Qୱ୳୰ െ Eୟ െ wୱୣୣ୮ െ Q୵ሻ [1] 

 
where SWt is the final soil water content (mm H2O), SWo is the initial soil water content on day i, t is the time 
(days), Rday (mm H2O) is the amount of precipitation on day i, Qsurf (mm H2O) is the amount of surface runoff 
on day i, Ea (mm H2O) is the amount of evapotranspiration on day i, wseep (mm H2O) is the amount of water 
entering the vadose zone from the soil profile on day i, and Qgw (mm H2O) is the amount of return flow on day 
i. The different inputs and processes involved in this phase of the hydrologic cycle are summarized in the 
following sections. 
 SWAT processes can be mainly divided into land phase of the hydrologic cycle and routing phase of 
hydrologic cycle. The major components of SWAT model are climate, hydrology, plant growth, erosion, flood 
routing and sediment routing. The main advantage of SWAT is that it has the flexibility to choose from various 
alternative models available for each component of the hydrological cycle (Arnold et al., 2012). For the 
simulation of surface runoff, SCS curve number procedure (SCS, 1972) or the Green & Ampt infiltration 
method (1911) can be used. Generally, SCS-CN method is used since subdaily precipitation data is required 
for Green & Ampt infiltration method. For the Potential Evapotranspiration (PET), three methods have been 
incorporated into SWAT; which are the Penman-Monteith method (Monteith, 1965), the Priestley-Taylor 
method (Priestley and Taylor, 1972) and the Hargreaves method (Hargreaves et al., 1985), among which 
Penman-Monteith method is the accurate one. For the estimation of sediment yield for each HRU, Modified 
Universal Soil Loss Equation (MUSLE) (Williams, 1975) is used. Flood routing can be done using a variable 
storage coefficient method developed by Williams (1969) or the Muskingum routing method. For sediment 
routing in channel, simplified stream power equation of Bagnold’s (1977) equation is used. 
 
3 STUDY AREA 
 Study area is a part of Mahi river basin, which is one of the major West-flowing rivers running into the 
Gulf of Cambay. The catchment is situated in the lower Mahi basin exactly, which starts from below the 
Wanakbori weir and extends up to the mouth of the river, having a catchment area of 2,901.187 km2. The area 
is located between 73° 00’ E to 73° 50’ E longitude and 22° 16’ N to 23° 00’ N latitude as shown in the figure 
1. It is the lowest portion of a large river basin; hence the area is a flat, fertile and well developed alluvial land. 
Major portion of the study area is occupied with agricultural land for about 48.91% of the total area, 28.28% of 
area is covered by pasture land, 10.18% is covered by forest land, water bodies spreads over 0.95% and 
0.71% of the area is covered by urban land. In this particular study area, seven small tributaries merges to the 
Mahi River. They are Kun, Mahia, Mesari, Kuvach, Goma, Kharod and Meni. The catchment area comes 
under tropical wet climatic region. Types of soil which are seen in the catchment are orthic acrisols, eutric 
cambisols, calcaric fluvisols and chromic vertisols. The mean annual rainfall in the catchment is 1090.343mm. 
57% of the total catchment area comes under the elevation zone of 2-6% of slope. 
 

 
Figure 1. Study area with watershed boundary and stream network. 
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4 PREPARATION OF MODEL INPUT 
As far as SWAT model is concerned, like any other physically based hydrological model, SWAT also 

requires large amount of data. Preparation of data to be fed to SWAT itself is an important and time 
consuming step. It essentially requires input of hydrological data, meteorological data, digital elevation model 
(DEM), land use/land cover (LULC) map and soil map. 

Daily meteorological data (rain fall, minimum and maximum temperature, relative humidity and solar 
radiation) were collected from State Water Data Centre (SWDC), Gandhinagar, Gujarat for a period of 2003-
2008. The catchment comprised of 12 rain gauge stations and 3 climatic stations. Few data points were 
missing from some gauging stations. Thus, missing data analysis was performed by using Inverse Weightage 
Distance Method (IWD). SWAT needs metrological data inputs in a particular format and for making input files 
in this format, ‘SWAT Weather Database’ tool was used. It is a user-friendly tool, used to store daily weather 
information, to create .txt files (used as input information during an ArcSWAT project setup) easily and to 
calculate the WGEN statistics of several weather stations efficiently. 
The study area starts from below the Wanakbori weir and extends up to the mouth of the river. Hence, 
discharge from the Wanakbori weir was used as an inlet to the catchment in SWAT model. Stream flow was 
gauged at the station point Khanpur in the catchment. The daily discharge data from Khanpur station and daily 
gauge data from Wanakbori weir were collected from Central Water Commission (CWC), Gandhinagar for a 
period of 2003 to 2008. 

SRTM 1 arc second (30m) Digital elevation model (DEM) were downloaded from USGS Earth Explorer 
website and preprocessed in ArcMap 10.1. To produce the land use/ land cover map, satellite images of 
Resourcesat-1, using LISS-III sensor with spatial resolution of 23.5 m were downloaded from Bhuvan-NRSC 
(National Remote Sensing Centre). The downloaded 19 toposheets were analyzed in ArcMap 10.1 using 
image classification tool and the study was divided in to 7 land use classes as shown in figure 2. Soil map 
used in this study was produced by Food and Agriculture Organization (FAO) and the required portion was 
clipped and pre-processed in ArcMap 10.1. 
 

 
(a)                                                                               (b) 

Figure 2. (a) DEM and (b) Land use map for the catchment. 
 
5 METHODOLOGY 
 A new ArcSWAT project was setup in the ArcSWAT interface. SWAT possess an automatic watershed 
delineation menu for the delineation of the catchment. Preprocessed DEM was the primary input to the SWAT 
model. Stream definition was done using DEM-based approach controlled by threshold area (59.94 km2). 
Apart from the outlet generated by stream definition tool, two outlet points were added. One was at the 
Khanpur station, CWC gauging station and another was at the mouth of the river to delineate the whole 
catchment. Accordingly, discharge from the Wanakbori weir was entered as inlet to the catchment which 
contributed from the upper part of the basin. Hydrologically connected subbasins were formed using 
delineation tool and subbasin parameter were calculated. Land use map and soil map were inputted into the 
HRU analysis menu and slope map was generated by using the DEM. 259, HRUs were generated for the 
catchment.  
 

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

4028 ©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print)



  
          

  

 

 
Figure 3. Algorithm of SWAT model. 

 
Observed daily weather data, such as rainfall (mm), relative humidity (fractional), maximum temperature 

and minimum temperature (Ԩ) and solar radiation (W/m2) data for 6-year period (2003 to 2008) were 
processed using SWAT Weather Database tool and inputted in to weather station menu. Generated wind data 
by weather generator option was used and the required input tables for the simulation of SWAT was created. 
Inlet discharge data at Wanakbori was given in edit SWAT input menu.  

SWAT simulation is the process of predicting all variables associated with a hydrological model for a 
given period of time. Since hydrological model needs a warmup period to produce accurate result, the starting 
period of 2 years were given as NYSKIP. For the evaluation of streamflow daily simulations were used. A 
preliminary results analysis was done using ‘output.std’ flies and the SWAT Checker program. Sensitivity 
analysis, calibration and validation of SWAT model was done in SWAT CUP interface using SUFI 2 
optimization technique. 

 
6 RESULTS AND DISCUSSIONS 

A SWAT model was set up for the lower Mahi basin to predict the streamflow for the monsoon period of 
2005 to 2008. As far as a semi-distributed hydrological model is concerned, sensitivity analysis, uncertainty 
analysis, calibration and validations are important tools to authenticate the model. For this, a SWAT-CUP 
interface was used with the assistance of the tool, SUFI (Sequential Uncertainty Fitting) version 2. Sensitivity 
analysis is the process of determining the rate of change in model output with respect to changes in model 
inputs, i.e. parameters (Arnold et al., 2012). Determination of the most sensitive parameters for the study area 
is the first step for the calibration and validation process in SWAT. Absolute sensitivity analysis was done by 
changing the parameter values one at a time while keeping other parameters constant using Latin Hypercube 
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(LH) sampling. Parameterization can be done based on the information of hydrological processes and the 
spatial distribution of soil, land use and slope classes. It could be defined as “the process of imparting the 
analyst’s knowledge of the physical processes of the watershed to the model” (Arnold et al., 2012). 

17 parameters which may affect the flow were loaded to the SUFI interface and 11 parameters were 
found to be sensitive. The five most sensitive parameters are curve number (CN2), Manning’s n value for the 
main channel (CH_N2), bulk density (SOL_BD), deep aquifer percolation factor (RCHRG_DP) and Manning’s 
n value for overland flow (OV_N). The 11 parameters which are sensitive to the streamflow and their 
parameter ranges are given in Table 1. 

 
Table 1. List of parameters used in the SWAT model. 

Sl No Parameters  
Lower 
Limit 

Upper 
Limit 

1 SCS Curve number for moisture condition II (CN2) 38.5 97.9 
2 Manning’s ‘n’ value for overland flow (OV_N) 0.025 0.45 
3 Manning’s ‘n’ value for main channel (CH_N2) 0.01 0.3 
4 Base flow alpha Factor (1/days) (ALPHA_BF) 0.1 1 
5 Effective hydraulic conductivity in main channel alluvium in mm/hr (CH_K2) 0 2.5 
6 Ground water delay time in days (GW_DELAY) 0 60 

7 
Threshold depth of water in the shallow aquifer required for return flow to occur in mm H2O 
(GWQMN) 

2000 4500 

8 Available water capacity of soil layer in mm H2O (SOL_AWC) 0.21 1.05 
9 Saturated hydraulic conductivity in mm/hr (SOL_K) 0.65 38 
10 Deep aquifer percolation factor (RCHRG_DP) 0 0.5 
11 Moist bulk density in Mg/m3 (SOL_BD) 0.96 2.38 
 

In SWAT-CUP, 95 PPU represents the prediction uncertainty in the model. Based on this, SUFI2 have 
two statistics. The percent of measured data enveloped by 95PPU band is termed as P-factor, where the 
thickness of 95PPU envelope is the R-factor. Sensitivity analysis in SUFI2 aims to find reasonable value to the 
mentioned factors. For discharge, P‐factor of >70% and R‐factor <1 are required (Abbaspour et al., 2004). 
The model performance was evaluated using different statistical techniques. The most widely used two 
statistics reported in SWAT studies for calibration and validation are R2 (Coefficient of determination) and NSE 
(Nash-Sutcliffe efficiency). Coefficient of determination shows a measure of how well observed outcomes are 
replicated by the model outputs whereas Nash-Sutcliffe efficiency is the predictive power of a hydrological 
model. The value of R2 ranges from 0 to 1, where 1 represents a perfect model. While the value of NSE 
ranges from -∞ to 1. A model is considered to be good performing if NSE>0.5 and excellent performing model 
when NSE>0.75. R2 and NSE were calculated by using following equation where Q is a variable, and m and s 
represent for measured and simulated, respectively, and the bar represent for average value. 
 

Rଶ ൌ
ൣ∑ ൫୕ౣ,ି୕ౣതതതതത൯ ൫୕౩,ି୕౩തതതത൯൧

మ

∑ ሺ୕ౣ,ି୕ౣሻതതതതതതమ ∑ ሺ୕౩,ି୕౩ሻതതതതതమ
 [2] 

 

E ൌ 1 െ
∑ ሺ୕ౣି୕౩ሻ

మ
సభ

∑ ሺ୕ౣ,

సభ ି୕ౣሻതതതതതതమ [3] 

 
Calibration is a process of improved parameterization of model for the study area conditions to get a 

lower prediction uncertainty (Arnold et al., 2012). In validation process, model is run for the parameters and 
their ranges that are obtained from the calibration and predictions are compared with observed data which is 
not used in the calibration. Calibration and validation process were carried out with the monsoon period data. 
For the calibration and validation of the streamflow variable, 3 (2005-2007) years were chosen for the 
calibration and one year for validation (2008). Results from calibration and validation of the model for 
streamflow are given in table 2. Figure 4 shows the calibration of stream flow. From the Figure 4, it can be 
seen that almost all the events are simulated very accurately. Figure 5 shows the validation of stream flow 
from the independent data set for the year 2008. 
 

Table 2. SWAT model performance evaluation. 
Sl 
No 

Model Performance Evaluation 
Calibration 2005-2007 Validation 2008 

1 P factor 0.60 0.80 
2 R factor 0.07 0.47 
3 NSE 0.75 0.86 
4 R2 0.83 0.86 
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Figure 4. 95PPU plot for streamflow calibration. 

 

 
Figure 5. 95PPU plot for streamflow validation. 

 
7 CONCLUSIONS  

SWAT is a physically semi-distributed model, it requires large amount of data and it have the capability to 
account almost all physical process. Simulation of streamflow for lower Mahi basin was done by using SWAT 
model. SWAT model was executed in the ArcSWAT interface in the GIS environment and input thematic 
layers were prepared by using the ArcMap 10.1 version. Digital Elevation Model (DEM) was used as a primary 
input in SWAT and its resolution directly affects the model efficiency. From sensitivity analysis, it was found 
that 11 are sensitive to streamflow and the five most sensitive parameters are CN2, CH_N2, SOL_BD, 
RCHRG_DP and OV_N. These parameters are associated with surface runoff, Manning’s resistance 
coefficient, soil characteristics and ground water component. Hence, streamflow is mainly affected by the 
mentioned processes. From the calibration and validation of the model, it can be concluded that SWAT model 
produces good results for the simulation of streamflow. 
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ABSTRACT  
 
Prediction of rainfall is extremely important for management of water resources. In urban areas, rainfall has a 
great impact on traffic, sewer systems, and other human activities. In this study, Learning - Cellular 
Automation (CLA) and artificial neural networks (ANNs) were used for classification of rainy and no-rainy 
days. For classification of data, a comparison between CAL and ANNs indicated that accuracy of CLA with 
R2=0.796 and RMSE=0.407 is better than ANNs (R2=0.556 and RMSE=0.431). In order to predict daily 
rainfall, three methods were employed including ANNs with two learning functions of LM and BFGS and hybrid 
of ANNs-CLA. Although the ANN with learning function of LM predicts the rainfall with high accuracy 
(R2=0.839 and RMSE= 0.222), a hybrid of ANNs-CLA provides better results with higher accuracy (R2 = 0.88 
and RMSE= 0.202). 
 
Keywords: Neural network; rainfall; CLA; modelling; urban water. 
 
 
1 INTRODUCTION 

Prediction of rainfall is extremely important for management of water resources. In urban areas, rainfall 
has a great impact on traffic, sewer systems, and other human activities. However, it is one of the most 
complex issues in the context of understanding and modeling and has become one of the biggest challenges 
in water science (Olsson et al., 2004). Notable number of methods have been developed for prediction of 
rainfall. Due to the temporal and spatial variation of rainfall, prediction of rainfall with high accuracy is difficult 
and each method has ability to forecast rainfall with different accuracy (Georgakakos, 1984; Partal and Ki, 
2007).  

In recent decades, the artificial neural networks (ANNs) have been successfully employed in many 
hydraulic and hydrology studies (Gazzaz et al., 2012; Song et al., 2013; Li et al., 2014; Mohammadpour et al., 
2013a; Mohammadpour et al., 2013b; Mohammadpour et al., 2015a; Mohammadpour et al., 2015b). Abhishek 
et al. (2012) have used different types of neural networks and multiple linear regressions (MLR) to estimate 
the total rainfall in Sparta. Wu et al. (2015) used a hybrid model of wavelet neural network and particle swarm 
optimization with mutual information to forecast monthly precipitation. El-Shafie et al. (2011a) employed the 
ANNs and Multi Linear Regression model (MLR) for prediction of rainfall in Egypt. They have used several 
statistical parameters for evaluation of the methods. A comparison between results indicated that ANNs 
provides better performance than MLR model. Geetha and Selvaraj (2011) developed ANNs with back 
propagation technique to predict mean monthly rainfall in India. The performance of ANNs was acceptable for 
prediction of independent periods of rainfall. 

For prediction of temporal dimension of the rainfall pattern, El-Shafie et al. (2012) used three different 
neural networks namely; Input Delay Neural Network (IDNN), Multi-Layer Perceptron Neural network (MLP-
NN) and Radial Basis Function Neural Network (RBFNN). The IDNN provides better result in comparison with 
other methods.  

Recently, to access a high accuracy, the ANNs have been merged with the other techniques. He et al. 
(2015) developed a hybrid wavelet neural network and particle swarm optimization to predict monthly rainfall. 
Partal and Cigizoglu (2009) employed a combination of wavelet and ANN to forecast daily rainfall in Turkey. 
The results showed that ANN is able to predict the daily rainfall peaks with high accuracy. For short term 
rainfall prediction, a hybrid of ANNs and genetic algorithm (GA) was developed by Nasseri et al. (2008). Chau 
and Wu (2010) utilized a combination of singular spectrum analysis (SSA) and ANN-support vector regression 
(SVR) for daily rainfall prediction. They showed that SSA is successfully able to improve the ANN 
performance. A hybrid of ANNs and wavelet was developed by Nizar et al. (2011) to forecast monthly rainfall. 
They have used different geographical region to test the proposed method and found that this technique was 
capable to predict monthly rainfall with good accuracy. 

In the last decades, the learning automata (LA) has been considered as a powerful tool for classification 
of data and a group of learning automata is able to solve difficult problems. A number of applications for CLA 
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have been developed in different fields (D'ambrosio et al., 2001; Folino et al., 2006; Feng et al., 2011; 
Ravazzani et al., 2011). Prasetya et al. (2015) developed cellular learning automata (CLA) to determine the 
direction of the spread flooding. The ability of CLA was evaluated using two dimensional images. Previous 
studies indicated that CLA was generally used to classify data and ANN was mostly employed to predict 
participation. Generally, weather stations provide a dataset including both rainy and dry days. However, 
combination of CLA and ANNs can be employed as a robust technique to automatically classify and predict 
daily rainfall for a group of data that include both rainy and dry days.  

The aim of this research is to predict rainy days. At first, ability of both ANNs and CLA was evaluated to 
classify dataset into rainy and no-rainy days. Then, three methods were used to predict daily rainfall including, 
ANNs with learning function of LM (Levenberg-Marqwardt), ANNs with learning function of BFGS (Broyden, 
Fletcher, Goldfarb, Shanno) and hybrid of CLA-ANN. Finally, accuracy of CLA-ANN was compared with other 
methods. 

 
2 MATERIALS AND METHODS 

In this study, the data were collected from Shiraz synoptic stations. Shiraz is capital city of Fars province 
with over 56 years of rainfall data. The data used in this study included daily minimum temperature (Tmin), the 
maximum temperature (Tmax), average temperature (Tmean), minimum humidity (Hmin), the maximum 
humidity (Hmax), maximum wind speed (Wmax), average wind speed (Wavg), minmum pressure (Pmin), 
mean pressure (Pmean) and daily rainfall. In this study, 2249 datasets were collected to predict rainfall and 
ranges of collected parameters are shown in Table 1.  

 
Table 1. Range of collected data.  

Parameter  minimum maximum Standard deviation 

Tmin (centigrade) -9 26 8.5 
Tmax (centigrade) 1 41 21 
Tmean (centigrade) -3 33.5 15.25 
Hmin (%) 0 97 48.5 
Hmax (%) 0 100 50 
Wmax (m/s) 0 29 14.5 
Wavg (m/s) 0 13.2 6.6 
Pmin (milli-bar) 839 861 849.55 
Pmean (milli-bar) 995 1029 1011.6 
Daily Rainfall (mm)  0  99  49.55 

 
3 ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Networks (ANNs) are a computational process that attempts to represent and compute a 
mapping from multivariate data sets as inputs to another as outputs. A neuron is the smallest part of the 
neural network. To approximate a multi-variant function of f(x), the ANN is developed in three layers which are 
inputs, hidden and output layers. The numbers of neurons in input and output layers are the number of input 
and output variables, respectively, while the number of neurons in hidden layer is normally determined by trial 
and error. In learning process, an algorithm tries to find the best weight for approximation function of f(x). The 
Feed Forward Back Propagation (FFBP) algorithm is recommended as a useful method in hydraulic and 
hydrology problems. This technique is a descent algorithm which tries to minimize the error in different 
epochs. The weights of network change by the method such that the error decreases along a descent 
direction. In the descent direction method, two parameters, namely learning rate (LR) and momentum factor 
(MF) set the weight of network. Architecture of three-layer neural network is shown in Figure 1. 

 
In this study, the collected data were normalized using following equation: 

 

 [1] 

 

1.0
)(

)(9.0

minmax

min 




XX

XX
X n

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

4034 ©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print)



          
 

 

 

 
Figure 1. Structure of a three-layer neural network. 

 
Furthermore, three statistical parameters, coefficient of determination (R2), mean absolute error (MAE) 

and root mean square error (RMSE), were chosen to evaluate the accuracy of neural network and hybrid 
neural network - learning automaton (CLA-ANN) as given in the following:  
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where ܱ and ܲ are observed and simulated values respectively,  is the average of observed data and n is 
the number of samples. 
 
4 CELLULAR AUTOMATON - LEARNING (CLA) 

A cellular automaton (CA) is a mathematical model and can be used for computation and systems 
simulation. It is a discrete model and consists of regular grid of cells. The number of dimension in grid is finite 
and cells can be one, two or multi-dimensional. In CA, a simple rule is defined for each cell and a set of cells 
are able to choose neighbourhood. Generally, the rule of cells is fixed and not changed over time. In this 
method, an initial state is assigned to each cell and a new generation is created based on the state of the cell 
and its neighbourhood.  

Learning automata (LA) is a machine-learning algorithm and able to learn through interaction with its 
environment. It is designed based on probability distribution and updates its action to improve its own 
performance over time.  

A composition of CA and LA is able to solve the weakness of rule cells. As a result, Cellular Learning 
Automata (CLA) is recommended as a CA with LA in each cell. The CLA is superior in comparison to CA and 
LA, because of its ability of learning. However, the LA residing in a particular cell determines its state (action) 
and the CA operates under its rule. The rule of the CLA and the actions selected by the neighbouring cells 
determine the reinforcement signal to the LA residing in a cell. The governing equation for CLA with d-
dimensional can be expressed as: 

 

CLA=( , ,A,N,F) [5] 

 

O
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where Zd is a lattice of d-tuples of integer number,  is a finite set of states, A is a set of LA assigned to each 

cell, N ൌ ሺxଵഥ ,… , x୫തതതതሻ is neighborhood vector and it is a finite subset of , F: ∅୫ → β is a rule of the cellular 
learning automata, where β is the set of values that the reinforcement signal can take.  

The CLA is classified into synchronous and asynchronous. In synchronous CLA, all cells are 
synchronized with a global clock and executed at the same time (Beigy and Meybodi, 2004). 

 
5 RESULTS AND DISCUSSIONS 

The total collected data (2249 dataset) were divided randomly into training and testing subsets. Around 
80% of the datasets (1806 data sets) were used for training and 20% for testing (443 datasets). To determine 
the main parameters on rainfall, a sensitivity analysis with thirteen scenarios was performed on collected data. 
As shown in Table 2, all parameters were used in the first scenario and a parameter has been removed in the 
next scenarios. The results indicated that the lowest error (MAE=0.0066 and RMSE=0.0811) was obtained 
from first scenario with nine parameters. Therefore, this scenario was chosen for the next analysis. 

 
Table 2. Sensitivity analysis for different parameters. 

order variables  MAE RMSE R^2 

1 
Tmin, Tmax, Tmean, Hmin, Hmax,  

0.0066 0.0811 0.541 
Wmax, 'Wavg, Pmin, Pmean 

2 Tmin, Tmax, Tmean, Hmin, Hmax, Wmax, 'Wavg, Pmin 0.0156 0.125 0.529 

3 Tmin, Tmax, Tmean, Hmin, Hmax, Wmax, 'Wavg, Pmean 0.0149 0.122 0.519 

4 Tmin, Tmax, Tmean, Hmin, Hmax, Wmax, 'Wavg 0.0173 0.131 0.468 

5 Tmin, Tmax, Tmean, Hmin, Hmax, Wmax, Pmean 0.016 0.126 0.517 

6 Tmin, Tmax, Tmean, Hmin, Hmax, Wmax, Pmin 0.0163 0.128 0.501 

7 Tmin, Tmax, Tmean, Hmin, Hmax, Wmax 0.0191 0.138 0.494 

8 Tmin, Tmax, Tmean, Hmin, Hmax, 'Wavg 0.0165 0.128 0.443 

9 Tmin, Tmax, Tmean, Hmin, Hmax,  0.0167 0.129 0.375 

10 Tmin, Tmax, Tmean, Hmin, 0.017 0.131 0.418 

11 Tmin, Tmax, Tmean, 0.0177 0.133 0.292 

12 Tmin, Tmax 0.0203 0.142 0.263 

13 Tmin 0.0249 0.157 0.0209 

 
5.1 Classification of rainy days using ANN and CLA 

In this section, ANNs and CLA were employed for classification of collected datasets into rainy and no-
rainy days. Accuracy of these methods was evaluated using statistical parameters. Table 3 shows the CLA 
(R2=0.796, MAE=0.166) is able to classify the data with a higher accuracy in comparison with the ANNs (R2= 
0.556 and MAE=0.186). It might be due to the performance of CLA and ANN to present results. In this 
classification, zero and one were chosen for rainy and no-rainy days, respectively. However, the result of 
ANNs was zero and one, while the result of CLA was exactly in terms of zero and one. Therefore, 
classification of CLA is more accurate than ANNs and this method can be used as a robust technique to 
classify the rainy days. 

 
Table 3. Comparison of CLA and ANN to classify data. 

Classification RMSE MAE R2 

ANN 0.431 0.186 0.556 

CLA 0.407 0.166 0.796 

5.2 Prediction of rainfall 
In order to predict daily rainfall, three methods were employed including, ANNs with learning function of 

LM (Levenberg-Marqwardt), ANNs with learning function of BFGS (Broyden, Fletcher, Goldfarb, Shanno) and 
hybrid of CLA-ANN. All datasets including rainy and no-rainy days were used for these methods. It should be 
mentioned that hybrid of CLA-ANN is able to automatically divide datasets into rainy and no-rainy days, while 
ANNs used all data for prediction of rainfall. 

The Feed Forward Back Propagation (FFBP) was developed with two learning functions of LM and BFGS 
with different number of neurons in hidden layer. As shown in Table 4, the best result was obtained with 9 and 
6 neurons in hidden layer for LM and BFGS, respectively. The provided results indicated that performance of 
LM with R2=0.839 and RMSE= 0.222 is better than BFGS (R2=0.698 and RMSE= 0.246). Therefore, for hybrid 
of ANNs and CLA, the LM was chosen as an activation function. 

In next step, to improve accuracy of result, a hybrid of ANNs and CLA was used to prediction of daily 
rainfall. In this method, high accuracy was obtained for a network with 9 neurons in hidden layer (Table 4). 
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The results showed that a combination of ANNs and CLA provides better prediction for daily rainfall (with 
R2=0.881 and RMSE= 0.202) in comparison with ANNs. As mentioned, in the hybrid of ANN-CLA, the CLA 
automatically classifies the datasets into rainy and no-rainy days and then, ANNs only used rainy days for 
prediction of daily rainfall. This procedure increases accuracy of ANNs and provides better prediction. 
 

Table 4. Quality results in the forecast based on ANN and CLA-ANN. 
 ANN(BFGS)  ANN(LM)               CLA-ANN(LM) 

No of Neurons RMSE MAE R2  RMSE MAE R2  RMSE MAE R2  

      
1 0.198 0.039 0.651  0.219 0.048 0.791  0.231 0.054 0.726  

2 0.200 0.040 0.654  0.221 0.048 0.783  0.208 0.043 0.798  

3 0.220 0.048 0.657  0.234 0.055 0.744  0.211 0.045 0.789  

4 0.210 0.044 0.671  0.223 0.051 0.775  0.211 0.045 0.809  

5 0.199 0.039 0.678  0.217 0.0472 0.803  0.208 0.0432 0.845  

6 0.246 0.060 0.698  0.268 0.0716 0.821  0.207 0.043 0.867  

7 0.199 0.039 0.677  0.218 0.0477 0.815  0.209 0.044 0.811  

8 0.215 0.046 0.674  0.228 0.052 0.756  0.223 0.049 0.857  

9 0.221 0.049 0.681  0.222 0.049 0.839  0.202 0.041 0.881  

10 0.211 0.044 0.659  0.232 0.054 0.823  0.216 0.047 0.857  

 
In Table 5, the technique presented in this study is compared with previous study and other methods. 

The results indicated that the accuracy of ANNs-CLA is higher or comparable with other soft computing 
models. This technique can be used as a robust tool for prediction of problem related to water science and 
hydrology problems.  
 

Table 5. A comparison between present and previous research. 
Authors Rainfall prediction 

 technique 
Correlation 
coefficient 

Abbot and Marohasy (2014) ANN R=0.86 
Wu et al. (2015) RBF R=0.755 

Valverde et al. (2014) ANN R=0.719 
Babel et al. (2015) ANN R=0.61 
Sattari et.al. (2014) MLP artificial neural network R=0.87 

He et al. (2015) hybrid wavelet and ANN R=0.47 

Present Study CLA-ANN R=0.88 
 
6 CONCLUSIONS 

Prediction of rainfall is one of the most important parameters in hydrology. In this research, two methods, 
ANNs and CLA, were employed for classification of rainy and no-rainy days. The results indicated that 
accuracy of CLA with R2=0.796 and MAE=0.166 is better than ANNs (R2=0.566 and MAE=0.186) for 
classification. In order to predict daily rainfall, three methods were employed including ANNs with learning 
function of LM, ANNs with learning function of BFGS and hybrid of ANNs-CLA. Although the ANN with 
learning function of LM predicts the rainfall with high accuracy (R2=0.839 and RMSE= 0.222), a hybrid of 
ANNs-CLA provides better results with higher accuracy (R2 = 0.88 and RMSE= 0.202). The techniques 
presented in this study can be successfully used as a robust tool for prediction of problem related to water 
resources, hydrology and hydraulic issues. 
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ABSTRACT  
  
This study demonstrates the determination of evapotranspiration using Gis and remote sensing. Landsat 
images of resolution 30m is used in the present study. Gridded Landsat images are available in eleven 
different bands, all bands are composited and processed for mosaic to form a single image for study area in 
Arc GIS 10.1. After forming the mosaic, a single image is processed for the study area delineation. After 
delineating, masking is done to extract the exact study area. Obtained image is then processed for NDVI map 
in ERDAS Imagine 2014. Once the NDVI map is obtained based on the NDVI value, study area is classified 
into 5 different classes viz, Water Bodies, Agriculture Land, Built-up Land, Barren Land and Forest. Average 
value of NDVI is obtained in each classification. Using the NDVI, crop coefficient (Kc) is obtained for every 
class. In the present study to obtain reference evapotranspiration, Penman-Montieth model was used. From 
the Kc and Reference evapotranspiration actual evapotranspiration was calculated. Obtained results were 
validated using the actual ground truth data. It has been found that the results are showing good agreement 
with the actual result. 

 
Keywords: NDVI; crop coefficient (Kc); evapotranspiration; arc GIS; reference evapotranspiration. 
 
 
1  INTRODUCTION  

In today’s scenario, water conservation is very important. Globally, climate is changing and most of the 
places temperature trend indicates increasing. Everything on this planet needs more water than usual usage if 
the temperature increases. Crop water requirement differs from crop to crop. Evapotranspiration is an 
important factor for irrigation management. Therefore, the determination of evapotranspiration is an essential 
part of irrigation supply. One of the widely-accepted method to determine the evaporation is by multiplying the 
reference evapotranspiration (Et0) to the crop coefficient (Kc) (Hunsaker et al., 2003). Food and Agricultural 
Organization has given crop coefficient values for different crops at different stages. Determination of crop 
coefficient are given in FAO-56, (Allen et al., 2005). In FAO-56, crop coefficients are intended for use with 
reference grass (Allen et al. 1998). FAO-56 also mentioned method for predicting Et0 from Penman– Montieth 
equation which is based on a hypothetical grass reference of height 0.12 m having an albedo of 0.23 and 
surface resistance of 70 s m−1 for 24 h time steps (Allen et al., 2005). Standardized equations for computing 
parameters in the FAO-56 Penman–Montieth equation are given in Allen et al. (1998), Pereira et al. (1996), 
Smith et al. (1992) and Pereira and Allen (1999). Crop coefficient represents the total effects of major 
characteristics that distinguish the crop from the reference evapotranspiration Et0 (Allen, 2000). These 
characteristics are crop height, albedo of the crop-soil, and crop-soil surface. Detail study of each parameter 
has been studied by Allen (2000). During the period of crop growing, Kc value increases from minimum to fully 
developed canopy. Usually, Kc value is a time dependent smooth curve. Once the full canopy is developed, 
Kc value starts declining and it depends on growth characteristics of the crop and irrigation management 
(Kamble, 2013). Crop coefficients primarily depend on leaf age, the dynamics of canopies, canopy roughness, 
light absorption by the canopy, crop physiology and surface wetness (Justice, 2002). 
 The Normalized Difference Vegetation Index (NDVI) is extensively used for the irrigation scheduling, 
change detection, land cover characterization, vegetation monitoring, drought detection and Crop yield 
assessment (Justice, 2002; Kamble and Irmak, 2013; Kamble et al., 2013). NDVI calculates the red and Near 
Infrared reflectance. Between wavelength of 0.7µm and 1.3µm, green vegetation reflectance will be more so 
NDVI value varies between -1 to +1; +1 value of NDVI indicates the High Vegetation and -1 value indicates 
the zero vegetation. Many researchers (Eric et al., 2008; Kamble et al., 2013) have shown that there is strong 
correlation existed between crop coefficient (Kc) and NDVI. The normalized difference vegetation index can 
be easily obtained by processing satellite images of at least two bands of Red and NIR bands in ArcGIS. 
Once the NDVI value is obtained from the satellite images, that value can be correlated with Kc. Once the Kc 
is obtained indirectly from the NDVI value, actual evapotranspiration can be obtained.  
 Determination of actual Evapotranspiration from the NDVI dependent Kc value is effective within the 
crop, vegetative or forest area. However, determination of evaporation from no vegetative places like water 
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bodies or barren land, the above-mentioned method will not be more effective because reflectance in the Red 
and Near Infrared range will be almost zero for the water bodies. 
 The objective of this study is to determine actual evapotranspiration from the green vegetation by using 
NDVI and Kc models using Gis and remote sensing technique. 
 
 2 STUDY AREA DESCRIPTION 

Tapti River/ Tapi River is a river flowing through Central India. Tapati, Tapti, Tapee, Tapi are the various 
names used to denote Tapi River. Also known as, the daughter of Sun God, its basin extends over an area of 
65, 145 km sq. In India, Tapi River originates at Multani of Betul District of Madhya Pradesh. The Basin of 
Tapi River lies in three Indian States, namely, Gujarat, Madhya Pradesh and Maharashtra. Covering an area 
about 3,837 km2, 9,804 km2 and 51,504 km2 respectively. This study is limited to the Lower Tapi basin as 
shown in Figure.1 (Most of the area is in Gujarat State of India) and it lies between east longitudes of 720 67' 
and 730 41’, and between north latitudes of 21021' and 210 66’.  

 

 
Figure 1. Lower Tapi Basin. 

 
3 DATA COLLECTION 

In the present study, climatic data, e.g. Minimum Temperature, Maximum Temperature, Wind Velocity, 
Relative Humidity, Sunshine Hour Precipitation and Pan Evaporation are procured from the State Water Data 
Centre (SWDC), Gandhinagar (Gujarat) for the period of 1999 to 2014. Rainfall data are of daily frequency 
and all other parameters frequencies are twice of daily frequency. A total of four stations data were used 
which were uniformly distributed over the entire study area. Fifteen years of average climatic data are given in 
Table 1. For the Generation of NDVI map, Landsat image were used and the resolution of these images is 
30m. 

 
Table 1. Average climatically data for the period 1999 - 2014. 

 
4 RESEARCH METHODOLOGY 
 In the present study, it is mainly focused on the determination of evapotranspiration from satellite images 
and climatic parameters because these data are easily available and more reliable. Detail flowchart of 
methodology is shown the in Figure. 2.  
 
4.1  Estimation of Actual Evapotranspiration 
 Radiance of the reflectance for the crops is good between 0.86µm to 1.24µm so NDVI was calculated 
between these two bands from the remote sensing data but, at the same time, water bodies have no 
reflectance in this range, thus evapotranspiration was determined by the NDVI. Before obtaining the NDVI 
values from the composite raster image of Landsat satellite image, the image had to be classified. In the 
present study, area image was classified into five different classes namely Forestland, Agricultural Land, 
Water Bodies, Built-up area and Barren Land. Different classes and their contribution of area are given in the 

Station 

Min 
Temperature 

(0c) 

Max 
Temperature 

(0c) 

Relative 
Humidity 

(%) 
Wind Speed 

(Km/hr.) 
Sunshine 

(min) 

Pan 
Evaporation 

(mm) 
Rainfall 

(cm) 
Amli 20.74 33.20 65.00 4.78 30 2.00 8.96 

Chopadv
av 22.35 32.45 62.50 9.16 30 3.14 6.37 

Kakrapar 22.90 33.20 69.65 0.52 30 2.18 6.35 
Ukai 23.19 31.85 65.32 3.10 30 2.20 10.04 

Proceedings of the 37th IAHR World Congress 
August 13 – 18, 2017, Kuala Lumpur, Malaysia

4040 ©2017, IAHR. Used with permission / ISSN 1562-6865 (Online) - ISSN 1063-7710 (Print)



          
 

 

 

Table 2. Once the image was classified, NDVI raster can be generated in ArcGIS by image analysis tool. 
Many researcher (Baburao et al., 2013; Rafin et al., 2008) have provided the relationship between NDVI and 
Kc. In the present study, regression equation Eq. [1] given by Baburao et al. (2013) was used.  
 

	ܿܭ ൌ 	ܫܸܦ1.457ܰ	 െ 	0.1725                                  [1] 
 

 
Figure 2. Flow chart of research methodology. 

 
 Once the Kc values were obtained for the different NDVI values, reference evapotranspiration was 
determined from the climatic parameters and by using Etc/Et0 relationship with the Kc value, actual 
evapotranspiration (Etc) was calculated. To convert observed Pan Evaporation into evapotranspiration, 
relation given by Trezza (2002) was used.  
 
ሻݐሺ	ܧ                                                       	ൌ  [2]																					ሻሿݐሺܲܧ/ሻݐሾܲሺ݄݊ܽݐ	ݔ	ሻݐሺ	ܲܧ	
  
where E(t) represents the actual evapotranspiration, EP(t) is the pan evaporation value, P(t) is the rainfall, and 
tanh is the hyperbolic tangent function. Thus, obtained evapotranspiration was compared with the predicted 
evapotranspiration. Statistically, Root Mean Square Error (RMSE) was employed to validate the proposed 
methodology and Normalized Root Mean Square Error should be near or equal to zero for good prediction. 
 
5 RESULTS AND DISCUSSIONS 
 Landsat images of study area were obtained from the website (https://earthexplorer.usgs.gov/). Landsat 
satellite images were in eleven different bands, all these bands were composited and made into a single 
image by mosaic tool in the ArcGIS. Study area was classified into five different classes namely Forest area, 
Agricultural Land, Water Bodies, Barren land and Built-up area. Image classification was performed by 
Maximum Likelihood algorithm in the ArcGIS by collecting at least 100 samples in each classes. Result 
obtained after classification is shown in Table 2. From the table, it can be seen that there is more barren land 
fallowed by Forest land. Area of all classifications made in the study were estimated based on the pixel counts 
(Table 2). 
 
5.1  Estimating evapotranspiration for vegetation from the NDVI and Kc model 
 There is good correlation between Kc with NDVI and Evapotranspiration (Rafn, 2008). There are different 
values of crop coefficient for different crops given by FAO-56, on the other hand, leaf reflectance is also 
different for different crops. By using reflectance between Red and NIR, NDVI map was generated in ArcGIS 
as shown in figure 3. From the NDVI values, Kc values were computed using the regression model given by 
Baburao et.al (2013) as shown in Eq. (1). Using Etc/Eto=Kc, the actual evapotranspiration (Etc) can be 
calculated by multiplying Kc to Eto. Eto values were computed using Penman-Montieth Method. However, 
using satellite images, which has resolution of 30 m, it will be quite difficult to obtain crop coefficient for a 
particular crops. Hence, in this study, average value of NDVI for particular class was obtained from the 
satellite image.  
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Table 2. Classified area of Lower Tapi basin in Km2. 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. NDVI map for Lower Tapi Basin. 

 
 For the predicted evapotranspiration rates during Jan2011-Dec2012, the observed evapotranspiration 
values are shown in Figure. 4 to Figure.7. 
 

 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 4. Observed and predicted evaporation for Amli 
 

 
Figure 5. Observed and predicted evaporation for Chopadvav. 
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Figure 6. Observed and predicted evaporation for Kakrapar. 

 

 
Figure 7. Observed and predicted evaporation for Ukai. 

 
 From Figure 4 to Figure 7, one can find that the predicted values are very near to the observed values. 
 
6 CONCLUSIONS 

Present study has demonstrated the methodology for estimation of crop coefficient using NDVI values. 
Evapotranspiration rate were determined using estimated crop coefficient. Comparison of estimated 
evapotranspiration with the observed evapotranspiration shows good agreement with average RMSE of 0.3 
from all stations. It is concluded that the suggested method in the present study is useful for estimating 
evapotranspiration. 
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