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Impact of Climate Change on the water cycle

Observed Greenland Ice Mass Changes after gravimetric
GRACE measurements (The Earth Observer, 30 (3), 2018)
corresponding to 8 cm/century Sea Level Rise
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Melt duration (MD): total number of melting days after passive microwave monitoring
Mean melt duration (MMD): average number of melting days over Greenland
Melt index (MI): number of days of melting times the area detected as melting

Maximum melting surface (MMS): area of the surface presenting melting at least once

Results: Greenland Melting trends
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Impact of Global Warming on the
water cycle (1):
Flood timing
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Fig. 1. Observed trends of river flood timing in Europe, 1960-2010. The color scale indicates earlier or
later floods (days per decade). Regions with distinct drivers: Region 1, northeastern Europe (earlier snow-
melt); region 2, North Sea (later winter storms); region 3, western Europe along the Atlantic coast (earlier soil
moisture maximum); region 4, parts of the Mediterranean coast (stronger Atlantic influence in winter).

Bloeschl et al., Science, 2017



Impact of Global Warming o
the water cycle (2):
Flood intensity

Bloeschl et al., Nature, 28 Aug. 2019
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Change in mean annual flood discharge per decade (%)

Fig. 1 | Observed regional trends of river flood discharges in Europe
(1960-2010). Blue indicates increasing flood discharges and red denotes
decreasing flood discharges (in per cent change of the mean annual flood
discharge per decade). Numbers 1-3 indicate regions with distinct drivers.
1, Northwestern Europe: increasing rainfall and soil moisture. 2, Southern
Europe: decreasing rainfall and increasing evaporation. 3, Eastern Europe:
decreasing and earlier snowmelt. The trends are based on data from

n = 2,370 hydrometric stations. For uncertainties see Extended Data
Fig. 2b.



Impact of Global Warming on the water cycle (3):
mean annual riverflow

Journal of Hydrology 563 (2018) 818-833

Contents lists available at ScienceDirect
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Journal of Hydrology

journal homepage: www.elsevier.com/locate/jhydrol

Research papers

Long-term trends in global river flow and the causal relationships between R

Check for

river flow and ocean signals
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Data about monthly and annual riverflow of 916 rivers worldwide
flowing into the oceans in the period (1948—2004) show that for 120
of them the trends are positive, while for 51 they are negative.

L. Suetal Journal of Hydrology 563 (2018) 818-833
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Fig. 3. Spatial distribution of stations with streamflow trends deemed significant by the MK1/MK2/MK3/MK4 tests (5% significance level). Rivers with significant
increases in streamflow are represented by dark blue dots; rivers with streamflow increases that were not significant are represented by pale blue dots. Similarly,
rivers with significant decreases in streamflow are represented by red dots and rivers with streamflow decreases that were not significant are represented by pink
dots. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



Adaptation and resilience: structural measures
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Observed and projected MSL in Venice (IPCC 2013)
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Adaptation and

Resilience:

R _ the engineering

| ‘hardware’ is completed
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Simulation of storm surge barrage operations under scenarios
including climate change: role of hydrodynamic modelling
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Adaption & resilience
revision of design criteria in urban drainage

PLUS 4013-12

Z CSA
STANDARDS

mpacts on Intensity-
S — ) curves and develop new
Development, interpretation, and use of Jected cities in Canada.

rainfall intensity-duration-frequency (IDF)
information: Guideline for Canadian
water resources practitioners

| Rainfall Modeling:
ethods

ods (Ungaged Sites)

Courtesy of Van Thanh Van Nguyen MCGlll

MM
\e/

For Pasters Only for e puposs of




Structural measures (ADB, 2013; WB, 2016)

ADB

Guidelines for Climate

{ Proofing Investment in
' the Energy Sector
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Adaption: non structural measures as land use and
agricultural practices and ‘virtual’ water trade

IDCC

INTERGOVERNMENTAL PANEL oN ClimaTe chanee

Climate Change and Land

An IPCC Special Report on climate change, desertification, land
degradation, sustainable land management, food security, and
greenhouse gas fluxes in terrestrial ecosystems

(Summary for Policymakers)

“All assessed future socio-economic pathways result in increases in water demand
__and waterscarcity (high confidence)

Solutions that helj5 ddapt to and mitziggité‘féll"Mate change while contributing to
combating desertification ineludesiiter alia: water harvesting and micro-irrigation”

IPCC Geneva, 9 August 2019




Water-Food Nexus 9.6 % Water Footprint

4.6 % W Agriculture
m Domestic
Examples M Industrial
Beef (1 kg) 11 m3
Milk (1 liter) 0.8 m3
Wheat (1 kg) 1 md
Hoekstra and Chapagain,

2008
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Food trade — Virtual water trade
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Global virtual water trade and the
hydrological cycle: patterns, drivers
and socio-environment impacts

Environmental Research Letters,
14 (053001), 2019.




Conclusions

* The impact of CC on the water cycle is
evident although regional variability is high

* Discriminating natural and anthropic
factors is crucial

« Water engineering and hydro-sciences
can help in suggesting structural and non-
structural alternatives and solutions to
adapt to the challenges climate change is
posing to our and next generations



Sea-level rise effects?
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