On the influence of coherent structures on flow hydrodynamics, transport and mixing at river confluences

G. Constantinescu

Department of Civil and Environmental Engineering & lowa Institute of Hydraulic Research, The University of Iowa, USA

Collaborators:

S. Miyawaki¹, G. Kirkil¹, Z. Chen¹, B. Rhoads² and A. Sukhodolov³

¹Department of Civil and Environmental Engineering, The University of Iowa, USA

²Department of Geography, University of Illinois at Urbana-Champaign, USA ³Department of Ecohydrology, Institute of Freshwater Ecology and Inland Fisheries (IGB), Germany Are fancy numerical simulations of any value for a river mechanics person?

INTRODUCTION

River confluences

- fundamental elements of natural drainage networks
- play an important role in regulating the movement of sediment through braided river systems
- are habitats of high ecological value

- dynamics of mixing controls how tributary inputs of nutrients and food are dispersed within a main river

General features:

- large-scale coherent structures form inside and around the MI
- flow conditions are fairly shallow

MAIN PARAMETERS

- velocity ratio VR=U₁/U₂
- angles between the two incoming streams and downstream channel
- degree of concordance of the channel bed

THE PLAN

-explore a system where large-scale coherent structures control mass exchange, mixing and transport processes

-try to validate/amend some hypotheses advanced based on limited amounts of field/laboratory data

-go from simple to complex:

-sometimes we can learn a lot from less complex cases (fewer variables, simpler to understand and parameterize)

-be aware these less complex cases are not relevant for all types of natural stream confluences

MIXING INTERFACES AT RIVER CONFLUENCES

-Except maybe for confluences with a high degree of bed discordance, the region where the two streams come into contact can be described as a shallow MI containing quasi-2D eddies

-At river confluences, development of MI is strongly affected by bed friction

Classification of Mixing Interfaces (Constantinescu et al, WRR 2011, JGR 2012) Kelvin-Helmholtz mode (VR>>1) Wake mode (VR~1)

MIXING INTERFACES

-If the angle between the two streams is small and the velocity difference between the two streams is high, MI resembles a

SHALLOW MIXING LAYER developing between two parallel streams

-This is the simplest type of MI developing at a river confluence

-Some fundamental results:

BACKGROUND

Simplest case of ML: 'Deep' ML

(Brown and Roshko, JFM 1974)

-Mixing layer is self-similar

U₂

Spreading Rate
$$\frac{d\delta(x)}{dx} = const = \frac{\Delta U}{U_c}S'$$
 S'~0.09

-A deep mixing layer grows linearly with no bound!

-Vortex pairing produces larger and larger KH billows

Confluences between parallel streams

Main parameter describing spatial development of a shallow ML:

S – bed friction number

$$S(x) = \frac{\overline{c}_f \delta(x)}{2D(x)} \frac{U_C(x)}{\Delta U(x)}$$

-characterizes stabilizing influence of bottom friction on ML development

-S=Sc equilibrium -Sc~0.1 -shift and width of ML do not vary with x

Confluences between parallel streams SMOOTH BED

Max size=10-15D

Kirkil and Constantinescu, 2009

Confluences between parallel streams Effect of bed friction

SMOOTH BED

ROUGH BED (DUNES, H=0.25D)

Kirkil and Constantinescu, 2008

MIXING INTERFACES

-If the angle between the two streams is large and the velocity difference between the two streams is high, we get a more complex type of MI:

SHALLOW MIXING LAYER developing between two non-parallel streams

-Some interesting results obtained in an idealized geometry:

MI at a confluence between two non-parallel streams

QUESTION

Besides MI eddies are there other types of large-scale coherent structures forming close to the MI?

-Generally, the answer is positive

-SOV cells can form in the vicinity of the MI, especially for confluences at which the degree of bed discordance is not very high

Mechanism responsible for formation of SOV cells

-Sediment entrained and transported by SOV cells is the main cause for the large dimensions of confluence scour holes (D_{scour} ~5D; Best & Ashworth, Nature 1997)

-Mass exchange processes and thermal mixing between the two streams are strongly affected by the SOV cells

MIXING INTERFACES

-Let us finally consider a natural stream confluence

- -Small river confluence in Illinois
- Asymmetrical confluence with concordant bed
- -Angles: 0⁰, 60⁰

-Field data available for validation (Rhoads & Sukhodolov, 2001, 2004, 2008)

CONFLUENCE BATHYMETRY

CASE 1 (Vr~1) CASE 2 (Vr=5.5) - 1 year later

Re~77,000 (D=0.23m U=0.34 m/s)

Re~166,000 (D=0.36m U=0.45 m/s)

-MI contains eddies with opposite sense of rotation shed from wake region

-MI contains co-rotating eddies

Large-scale eddies below the free surface MEAN FLOW

VR=5.5

VR~1

-Primary SOV cells are counter-rotating

-VR=5.5: SOV cells are much more coherent on the high momentum side

Bed friction velocity: Mean flow

VR~1

VR=5.5

Bed friction velocity: Instantaneous flow

Why do some of the SOV cells induce large bed friction velocities in the region where the two streams collide?

-Incoming flow has to loose rapidly a large amount of transverse momentum as it approaches the MI

-Strong adverse pressure gradients are created as the cores of high streamise velocities in the two streams approach the sides of the MI

-This situation is similar to junction flows in which the necklace vortices form in a region of strong flow deceleration

-The necklace vortices have a large capacity to entrain sediment because they are subject to large-scale bimodal oscillations

Velocity histograms outside the main SOV cells:

CASE 1 (VR~1)

Velocity histograms contain only one peak

Velocity histograms inside SVI1: VR~1

SVI1 is subject to bimodal oscillations

Streamwise variation of intensity of bimodal oscillations:

IM

Eventually, transition to 1-peak shape will occur in the downstream channel

Do SOV cells play a role in formation of a large deposition bar at the inner bank?

BATHYMETRY

CASE 1

CASE 2 (1 year later)

TRACKING OF PASSIVE SCALAR INTRODUCED AT THE UPSTREAM JUNCTION CORNER: VR~1

SOV cells act as a pump of momentum and mass which besides entraining sediment from beneath, extract fluid and suspended sediment from the MI and advect them downstream of the CHZ

Can SOV cells affect mixing within the confluence?

THERMAL MIXING: VR~1

Conditions needed for SOV cells to form

-large angle between the two streams?

-large angle between at least one of the incoming streams and the downstream channel?

We will conduct a numerical experiment

Streamwise Oriented Vortical Cells

Case 4

Why sometimes the two streams do not appear to mix for large distances from the confluence apex?

A famous example (Amazon): Confluence of Solimoes and Negro Rivers

-Solimoes River contains sediment eroded from the Andes Mountains

-Negro River contains low sediment but high organic matters from the forest (black tea color)

-the two streams are also characterized by significant differences in temperature (4°C), nutrient and oxygen content

-the two rivers run side by side for 6 Km before they start mixing!

Confluence of Solimoes and Negro Rivers

-Differences in temperature and suspended sediment concentration means that stratification effects may be important !

-Can stratification delay formation of large-scale eddies within MI?

-Back to our small confluence in Illinois

STRATIFICATION EFFECTS (Case 2, Vr=5.5)

Ri=0.0

Ri=0.1

Confluences with a strong discordance in bed levels and complex bathymetry features

-Are we still talking about a MI that is just a more complex case of a shallow mixing layer?

-Do SOV cells still form?

Confluence of Ebro and Segre Rivers

J. Dolz and J. Prats-Rodriquez

Confluence of Ebro and Segre Rivers QR=2.5

Passive scalar introduced at confluence apex

FINAL REMARKS

-Eddy resolving techniques can be used to better understand flow physics and to test hypotheses related to mixing and transport in natural streams

Challenges:

- -Simulate larger-scale systems
- -Bed-morphology changes
- -Integrate ecological modeling