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Kinetic Theory in the 20" and 215t Century

All things are made of atoms--little particles that move around in perpetual
motion and gross properties of matter are a manifestations of atomic motion

Temperature, pressure, energy, momentum, density, viscosity, evaporation,
surface tension, conduction, diffusion and so on are manifestations of the
molecular motion.

Batchelor (1967, page 2, An Introduction to Fluid Dynamics):

The gross properties of solids, liquids and gases are directly related to their
molecular structure....

Richard Feynman (1967, chapter 1, page 2, Lectures in Physics):

If, In some cataclysm, all scientific knowledge were to be destroyed, and
onIy one sentence passed on to the next generation of creatures, what
statement would contain the most information in the fewest words?

| believe it is the atomic hypothesis...that all things are made of atoms--little
particles that move around in perpetual motion, attracting each other when
they are a little distance apart, but repelling upon being squeezed into one
another. In that sentence...there is enormous amount of information about
the world, if just a little imagination and thinking are applied.



Kinetic Theory Prior to 20™" : Controversial!

* Proponents: (Democritus
Euler & Bernoulli,
Maxwell, Boltzmann,
Einstein etc.)

» sought to make a
hypotheses about the way
atoms behave, and see if
the assumed behavior can
explains macroscopic
(observable) properties

 Democritus School(~350
BC)

There exists a void, and in
this void the atoms move
about always, in motion

 Einstein

Boltzmann is quite
magnificent... the question
IS really about the
movement of atoms

>

Opponents: (Aristotle, Mach, Planck,
Ostwald, etc)

unwise to hypothesize upon the

existence of things you could not

observe, such as molecules, in order to

gxplain why matter behaves the way it
oes.

research should be restricted to what
can be observed and measured, and
that theories should be limited to
establishing relationships amongst the
observed properties only.

Aristotle School: “Denied the existence
of atoms...matter is continuous and
looked exactly the same at all scales.”

Mach: At a meeting of the Viennese
Academy of Science in (1887), Mach
shouted: “I do not believe in atoms!”



Early Efforts in Kinetic Theory

Euler & Bernoulli (17 contury):
Related pressure to the motion of molecules
James Waterston (a Civil Engineer, 18" century)

derived the correct relations between pressure, temperature and molecular
speed; Derived the equi-energy principle in a mixture of gases; etc.

Paper submitted Dec. 11t 1845; published 1892!! Long after his death.

Reviewers: “nothing but non-sense”; “the whole investigation is confessedly
founded on a principle entirely hypothetlcal It exhibits many remarkable
accordances with facts... [but the assumptlons cannot be rigorously justified]

Lord Rayleigh: “The omission to publish it at the time was a misfortune, which
probably retarded the subject by ten or fifteen years.”

“a young author who believes himself capable of great things would usually do well
to secure the favorable recognition of the scientific world by work whose scope is
limited, and whose value is easily judged, before embarking on greater flights”



Equilibrium Kinetic Theory: Maxwell’s Probabilistic Approach
(~1860)
(1) The distribution of velocities in x, y and z are the same; (ii)
the distribution depends on the magnitude of particle

velocity only f
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Kinetic Theory and its Relation to Gross Properties
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Non-Equilibrium Kinetic Theory: Boltzmann
(~1870)
 Some or all macroscopic gradients of
properties (pressure, velocity, temperature
etc) are non-zero
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C.V.: contains particles located between x and x+?x and

possessing speeds between ¢ and x+?c¢
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Boltzmann and the NS
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Boltzmann Based Schemes & the Finite
Volume Approach

| | |
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Classical: Boltzmann:

» Characteristic Decomposition, > Particle motion (NO

»Waves and diffusion are treated
separate,

Characteristic Decomposition),

» Flux contains both waves and
diffusion (no splitting),



Applications

Shocks around wings; boundary layers;
flow separation etc. (e.g., Aerospace
applications).

Multiphase, multi-components flows
Flows In complex geometry
Turbulence

Problems where the NS are not valid:
rarefied gases; very thin shocks; flow In
nano and micro-channels



Can the Boltzmann Gas Kinetic model be
used for shallow flows? Ippen’s analogy!

“AF TECHNICAL REPORT No. 5985 _ ‘ May 1950
Revised Jan, 1951)

)
:
)
STUDIES ON TRE VALIDITY OF THE HYDRAULIC
ANALOGY TO SUPERSONIC FLOW

Parts I and I
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Ippen’s 1st Modification

lemadty retio, '1:';: etk ratiy By

T

1 r I
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| Tomperaturs retie, 18/ Lapk rotls, Pizdy
W - 2,50 Hydraulic
. theory
Initial Mach No, = 2,5 = Initial Froude No, e=9
Wave
Method of T | Po/ny A P2/py T2/T1 M2 /My
poysle B Eg(19a ) Eq(18) Eq(E2b)
Aercdynamic | 30964 —_— 1,489 1,768 1,181 0.B862
Theory
Direct 32930' | *,465 1,486 2.148 1.485 0,763
Aydraulio
Resiiees (-1.6%)| (+22,0%) | (+24.0%) | (-11,6%)
First
Modificetion |32 30' | 1,466 1,465 1,718 1,173 C.858
Hyd, Anelopgy f /"{-1.&;} (=2,35) L (-0, 7T%) (+0.,8%) I

\ /

2 Calculate from gas theory [



lppen’s 2" Modification
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Ippen’s Analogy and Bolzmann Gas model
for hydraulics (example 1. M=Fr=2.5)

o3 8B28BIEREB

o3 3838BRIERE

BoltzmanngasModel : M =25pP T2 1.489 b =30%4
r1

HydraulicTheory: F =25P %:1.465; b =32°30

Applying I ppen’s 2 modificationsto

Boltzmann M oddl: ' h
~2=1465=-2:D = 32°30=Db
r, h

; M =236

water?



Ippen’s Analogy and Bolzmann Gas model
for hydraulics (Example 2: M=Fr=5)

o3 BB2UBIBBE

o3 BB2UBIBBE

BoltzmanngasModel : M =5pb —= =2.0045 b =18"36¢
r 1

HydraulicTheory:F =5pP %:1.911' b =1935

Applying I ppen’s 2 modificationsto
Boltzmann Model: | h,
—2:1.9115@E b .=1935=b M =46

Water
r 1



Ippen’s analogy and the linkage between
Boltzmann Gas model and hydraulics
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Does the model handle waves? How well?

Does the model handle viscous/turbulent
flows? How well?

Su, Xu, Ghidaoui (1999). Journal of Computational Physics

Ghidaoui, Deng, Xu, Gray, (2001). International Journal for
Numerical Methods in Fluids.

Deng, Ghidaoui, Gray, Xu (2001). Advances In Water
Resources.

Zhang, Ghidaoui, Gray, Li, (2003), Advances In Water
Resources.

Ghidaoui, Li Nanzhou (2003). Journal of Hydroinformatics.

Liang, Ghidaoui, Deng, Gray (2006), Journal of Hydraulic
Research, IAHR.




Z/m

Does the BGK handle waves? How well?
Roll Waves (Fr=2.01)
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3.0E-O 6 seconds after perturbation 15 seconds later
2.5E-0 3 0E-03 35803
3.0E-03
2.0E-O 2.5E-03
5 _ 25E-03
£ 1.5E-0: g 20E03 £ 20803
~ 1.0E-O £ 1.56-03 B 16E-03
3 [=]
5.0E-O 9 1.0E-03 1.0E-03
” 5.0E-04
IOEN o0 ‘ ‘ 5.0E-04
0.0 0.5 1.0 1 0.0E+00 - . . } 0.0E+00 . . :
< o A 10 15 0.0 0.5 1.0 1.5 2.0
x (m) ti(lul

Tidal Bore in Qiantang River

54 SRR R

Zim

T'h



35

30

25

20

Shock & Expansion Waves
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— Analytical solution

A Computed results

—— Computed Results

B Measurement
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Wake Velocity Profile (UB)
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Comparison between our numerical data and Jirka's experimental data i
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Large Scale Turbulent Structures in
Shallow Flows
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Examples
» Flow In Compound and/or Composite Channels

v | ’ v [/ /)
g Aiji/ n, n fast,

\ll\lw ' l // ///'////

@ B
/SlOW
’ eControls the mass, momentum and
energy transport.

*Traps contaminants (measurements
| show that concentrations are 5 to 6
Island times larger than the average);

*The effective resistance is significantly
iIncreased




Chen & Jirka Frict_iqn_




Source of Vortex Street Oscillations:
Absolute or Convective?

t t

> X > X
Convectively unstable case Absolutely unstable case

Journal of Fluid Mechanics, 2006 by Ghidaoui, Kolyshkin,
Chan, Liang, Xu.

Journal of Fluid Mechanics, 2003, by Kolyshkin, A.A and
Ghidaoui, M.S.

Journal of Hydraulic Engineering, 1999, by Ghidaoul,
Kolyshkin.



Verification of the Wave-Maker Hypothesis
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(a) Experiment 2

(b) Experiment 3



All stability analyses do not explicitly include
the Bluff Body! How valid Is this approach?

Physics of Fluids, 2006, by Chan , Ghidaoui, Kolyshkin.



How to test for the validity?

Method 1: With Cylinder

wea.isdn ( 5

Method 2: No Cylinder




Method 1: With Cylinder

Method 2: No Cylinder

il
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=3

t=T/8=12.19s

t=T/8=8.4s
T=97.52s

T=67.2s



Method 1: With Cylinder Method 2: No Cylinder

1=T/4=24.38s 1=T/4=16.8s



Method 1: With Cylinder Method 2: No Cylinder

t=3T/8=36.75s t=3T/8=25.2s



Method 1: With Cylinder Method 2: No Cylinder

t=T/2=48.76s t=T/2=33.6s



Method 1: With Cylinder Method 2: No Cylinder

t=5T/8=60.95s t=5T/8=42.0s



Method 1: With Cylinder Method 2: No Cylinder

t=3T/4=73.14s t=3T/4=50.4s



Method 1: With Cylinder Method 2: No Cylinder
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t=7T/8=85.33s t=7T/8=58.8s



Method 1: With Cylinder Method 2: No Cylinder

t=T=97.52s t=T=67.2s



What Is the instability mechanism for
steadv & unsteady pipe flow?
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Zhao, Ghidaoui, Kolyshkin, (2006).
Journal of Fluid Mechanics.

Zhao, Ghidaoui, Kolyshkin (2004). Journal
of Hydraulic Research.

Ghidaoui, Kolyshkin (2002). Journal of
Fluid Mechanics.




here next? Helmholtz I_nstability &
" Sewer Surcharging
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Video can be found at http://www.youtube.com/watch?v=4aQySL0sKys




Geysering in Hong Kong; Contact the
speaker for a copy of the video



Conclusions

Ippen’s analogy provides a way to link Boltzmann gas kinetic theory to hydraulics

Boltzmann hydraulics model is accurate & efficient tool for surface water problems
for it

»  Handles complex geometry;

> Handles waves and their interactions;

»  Handles turbulent stresses:

»  Waves and diffusion do not need splitting.
Other fields:

»  Gas dynamics; porous media flow; multiphase flows; etc.

v
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Other Promising applications:

Systems with large numbers of interacting parts (e.g., traffic,
Sediment transport; population dynamics; etc)

Turbulence

J. Fluid Mech. (2004), vel. 519, pp. 301-314.  (©) 2004 Cambridge University Press
DOL: 10.1017/30022112004001211  Printed in the United Kingdom

Expanded analogy between Boltzmann Kinetic
theory of fluids and turbulence -

By HUDONG CHEN!, STEVEN A. ORSZAG?,
ILYA STAROSELSKY'aAND SAURO SUCCT
TEXA Corporation, 3 Burlington Woods Drive, Burlington, MA 01802, USA
?Department of Mathematics, Yale University, New Haven, CT 06511, USA
Istituto Applicazioni Calcolo, CNR, viale Policnico 137, 00161 Roma, Italy
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where the collision term is approximated in so-called BGK form (Bhatnagar, Gross &
Krook 1954) as
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